
  

  

Abstract—Humans can steadily and gently grasp unfamiliar 
objects based on tactile perception. Robots still face challenges 
in achieving similar performance due to the difficulty of 
learning accurate grasp-force predictions and force control 
strategies that can be generalized from limited data. In this 
article, we propose an approach for learning grasping from 
ideal force control demonstrations, to achieve similar 
performance of human hands with limited data size. Our 
approach utilizes objects with known contact characteristics to 
automatically generate reference force curves without human 
demonstrations. In addition, we design the dual convolutional 
neural networks (Dual-CNN) architecture which incorporates a 
physics-based mechanics module for learning target grasping 
force predictions from demonstrations. The described method 
can be effectively applied in vision-based tactile sensors and 
enables gentle and stable grasping of objects from the ground. 
The described prediction model and grasping strategy were 
validated in offline evaluations and online experiments, and the 
accuracy and generalizability were demonstrated. 

I. INTRODUCTION 

Humans are skilled in grasping objects. Through tactile 
perception, humans can grasp objects of unknown shapes and 
textures stably and safely [1]-[3]. This behavior can be 
referred to as gentle grasping. As shown in Fig. 1, human 
grasp-lift actions always involve a similar process of four 
phases [1]. The regulation of force primarily occurs during the 
load phase: the object’s movement is small, which results in 
minor skin deformation (usually submillimeter range [2]); 
However, humans can still quickly adjust force in a short 
period of time through subtle stimulation of slip and force. 
Two characteristics are highlighted in gentle grasping: 1) slip 
is prevented by maintaining the grasping force above the 
minimum force (required to prevent macro slip at a given 
moment); 2) the grasping force does not exceed the minimum 
force by much (typically no more than 60%) [4]. As a result, 
gentle grasping ensures a moderate force to lift an object 
stably without destroying the object or limiting dexterity [5]. 

Implementing gentle grasping in robotic systems is 
challenging [6]. Recently, the rapid development of tactile 
sensing technology has provided a promising avenue for 
inferring grasp stability [7], [8]. Array-type tactile sensors, 
such as magnetic-based e-skin [9], stand out for their 
integrability and replaceability. However, the dimensionality 
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and density of the measured information are limited. Recently, 
vision-based tactile sensors are valued for offering rich tactile 
information [10]. Techniques based on photometric stereo [11] 
or marker displacement [12] can obtain high-resolution and 
multimodal tactile features, thus providing valuable deep   
details for stability assessment. Such sensors offer two ways to 
achieve gentle grasping: slip- and force-based approaches. 

Slip-based methods ensure grasp stability by avoiding 
sliding [13]. Data-driven approaches, such as support vector 
machines (SVM) [14], the bimodal ConvLSTM network [15], 
normalized differential convolution (NDC) [16], and STNet 
[17], are widely employed to detect slip events. However, 
force control strategies based on slip classifiers typically 
adjust the grasp force after detecting sliding, which results in 
delayed responses to perturbations and short-term instability. 
One solution is to detect incipient slip, the transition from 
stable contact to macro slip, and use the stick ratio (the area 
ratio of the sticking region to the slipping region) to estimate 
the safety margin [18]-[20]. Yet, sui et al. demonstrated that 
using only the stick ratio to assess incipient slip is insufficient 
[21]. More detailed information regarding friction and force 
needs to be supplemented to enhance the quantification. 

Force-based methods focus on direct indicators of slip or 
contact modeling [22]. Currently, force-related indicators are 
usually achieved through end-to-end methods, including the 
UNet model [23], the ShuffleNetV2 model [24], etc. However, 
since force distribution is often obtained through data-driven 
methods, the sensitivity of the training data always poses 
challenges for consistent data collection. Thus, physics-based 
modeling is required to decouple the tactile sensor’s contact 
mechanics from the task-related tactile feedback model. 

In addition to the requirement for contact mechanics, the 
combined demands for speed and stability also necessitate 
providing the robot with expert annotations for the entire 
process (i.e., a suitable grasp force control curve). The most 
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Fig. 1. The gentle grasping process of humans [1]. During the load phase, the 
object’s vertical movement is very small, while the grasp force and load 
force have increased to near their peak values. The uncertainty of the object’s 
properties causes overshoot in the regulation of forces, but humans can still 
stabilize it close to the minimum force within a short time of about 200 ms. 
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common method for annotating data relies on manual human 
intuition [16]. However, designing the curve and collecting the 
data is often labor-intensive. Unlike detecting whether an 
object is slipping, expert data for gentle grasping tasks need to 
include the target force at each moment, which cannot be 
achieved manually. An automated method for generating 
reference force control curves is needed to achieve timely and 
effective grasp force control. 

This article proposes a strategy for learning gentle 
grasping through human-free force control demonstrations. 
This is a scheme for generating lightweight models. It utilizes 
pre-measured frictional properties of objects to construct an 
ideal force control demonstration, which is used for the robot 
to perform behavior cloning. This strategy can automatically 
generate expert trajectories without human involvement. 
Besides, to reduce training data while maintaining prediction 
accuracy, we incorporate a physics-based mechanical module 
into the training network. The force distribution obtained 
through the finite element method is not dependent on specific 
contact conditions, and is more sensitive to changes in 
grasping force and safety margins. As a result, gentle and 
stable grasping is achieved with a limited amount of data, and 
the model can generalize to unfamiliar objects. 

The remainder of this article provides the following: 
• The developed sensor and force reconstruction method. 
• The control strategy for generating demonstrations 

and the network to learn from the demonstrations. 
• Ablation studies and online experiments that evaluate 

the effectiveness of gentle grasping control. 

II. MATERIALS AND METHODS 

A. Tactile sensing and force reconstruction 
We customized the vision-based tactile sensor, Tac3D [25], 

as the robot finger. Fig. 2(a) illustrates the principle of 
vision-based tactile sensors. When an external object contacts 
the soft elastomer of the sensor, the displacement of markers 
on the contact surface can be used to discretely sample contact 
deformations. The structure of Tac3D sensor is shown in Fig. 
2(b). An internal camera (1920×1080 pixels) continuously 
captures the deformation of the elastomer at a frequency of 30 

Hz. The surface of the elastomer is engraved with a 20×20 
density marker pattern. Tac3D employs a virtual binocular 
vision system [26], as shown in Fig. 2(c). The key feature of 
this design is the use of mirrors to split the reflected light from 
the marker pattern into two paths. Similar designs can also be 
used to extend the sensor’s effective range [27]. This solution 
ensures a balance between measurement accuracy, structural 
compactness, and synchronized triggering of the sensor. 

Extracting distributed force information from deformation 
data has been shown to improve the assessment of grasping 
stability by suppressing features with minimal relation to 
contact and friction. Tac3D maps 3D deformation to 3D force 
distribution using finite element methods (FEM) [28], refined 
through various optimization calibration techniques [29]. 
Accurate force estimation with this approach relies on precise 
characterization of the gel’s physical properties (e.g., Young’s 
modulus and Poisson’s ratio). Also, a new force mapping 
model needs to be constructed through FEM if the gel shape of 
the sensor changes. Despite these limitations, physics-based 
models are valued owing to being least affected by contact 
conditions and not requiring training for specific scenarios. 

B. Generation of Force Control Demonstrations 
We consider the contact between a fingertip (i.e., the 

tactile sensor) and a deformable object, as shown in Fig. 3. For 
each position 𝑝𝑝𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) on the sensor’s contact surface 
𝑺𝑺(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), the micro-element force denotes 𝒇𝒇𝑖𝑖 = �𝑓𝑓𝑥𝑥𝑖𝑖, 𝑓𝑓𝑦𝑦𝑖𝑖 , 𝑓𝑓𝑧𝑧𝑖𝑖�

𝑇𝑇
. 

Considering the contact deformation, 𝑆𝑆 is not flat. Therefore, 
the normalized normal direction of 𝑆𝑆 at 𝑝𝑝𝑖𝑖 can be calculate as 

𝒏𝒏𝑖𝑖 = [𝑛𝑛𝑥𝑥𝑖𝑖 ,𝑛𝑛𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑧𝑧𝑖𝑖 ]𝑇𝑇 =
1

‖∇𝑺𝑺‖
∙ [
𝜕𝜕𝑺𝑺
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑺𝑺
𝜕𝜕𝑦𝑦

,
𝜕𝜕𝑺𝑺
𝜕𝜕𝑧𝑧

]𝑇𝑇 . (1) 

Select the element patch at 𝑝𝑝𝑖𝑖, and the micro-element normal 
force  𝒇𝒇𝑛𝑛𝑖𝑖  and tangential force  𝒇𝒇𝑡𝑡𝑖𝑖  on it can be calculate as 

  𝒇𝒇𝑛𝑛𝑖𝑖 = −(𝒇𝒇𝑖𝑖 ∙ 𝒏𝒏𝑖𝑖) ∙ 𝒏𝒏𝑖𝑖, (2) 
 𝒇𝒇𝑡𝑡𝑖𝑖 = −𝒇𝒇𝑖𝑖 + (𝒇𝒇𝑖𝑖 ∙ 𝒏𝒏𝑖𝑖) ∙ 𝒏𝒏𝑖𝑖. (3) 

Therefore, according to Coulomb’s friction, the condition for 
𝑝𝑝𝑖𝑖 not to undergo local slip is: 

𝜇𝜇 > � 𝒇𝒇𝑡𝑡𝑖𝑖� � 𝒇𝒇𝑛𝑛𝑖𝑖 �� , (4) 

where 𝜇𝜇 is the coefficient of friction. Under the elastic contact 
assumption, this relationship also holds for soft objects. 

We define the normalized average normal direction of 𝑆𝑆 as 

 
Fig. 2. (a) Marker displacement method used in vision-based tactile sensors. 
(b) Tac3D tactile sensor. (c) Virtual binocular vision system (VBVS). 

 
Fig. 3. (a) Contact model between a soft object and the tactile fingertip. (b) 
Grasping object with a two-finger manipulator. 



  

𝒏𝒏na =
∫ 𝒏𝒏𝑖𝑖 ∙ 𝑑𝑑𝑑𝑑 
𝑆𝑆

�∫ 𝒏𝒏𝑖𝑖 ∙ 𝑑𝑑𝑑𝑑 
𝑆𝑆 �

. (5) 

We consider 𝒏𝒏na as the normal of the equivalent contact plane. 
Therefore, the resultant normal force 𝑭𝑭𝑛𝑛  and the resultant 
tangential force 𝑭𝑭𝑡𝑡 of 𝑆𝑆 can be calculated as 

𝑭𝑭𝑛𝑛 = −��𝒇𝒇𝑖𝑖 ∙ 𝒏𝒏avg� ∙ 𝒏𝒏avg ∙ 𝑑𝑑𝑑𝑑
 

𝑆𝑆
, (6) 

𝑭𝑭𝑡𝑡 = −��𝒇𝒇𝑖𝑖 −  �𝒇𝒇𝑖𝑖 ∙ 𝒏𝒏avg� ∙ 𝒏𝒏avg� ∙ 𝑑𝑑𝑑𝑑
 

𝑆𝑆
. (7) 

Since the contact surface is not flat, the contact stability cannot 
be directly described using the ratio of 𝐹𝐹𝑡𝑡 to 𝐹𝐹𝑛𝑛. The contact 
coefficient can be defined as an alternative [21], expressed as 

𝑐𝑐𝑓𝑓 = 1 −
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝜇𝜇 ∙ 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
, (8) 

where 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡  and 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛  represent the micro-element 
resultant tangential and force normal force, respectively, as 

𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛 = �� 𝒇𝒇𝑛𝑛𝑖𝑖 � ∙ 𝑑𝑑𝑑𝑑
 

𝑆𝑆
= ��(𝒇𝒇𝑖𝑖 ∙ 𝒏𝒏𝑖𝑖) ∙ 𝒏𝒏𝑖𝑖� ∙ 𝑑𝑑𝑑𝑑

 

𝑆𝑆
, (9) 

𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡 = �� 𝒇𝒇𝑡𝑡𝑖𝑖� ∙ 𝑑𝑑𝑑𝑑
 

𝑆𝑆
= ��𝒇𝒇𝑖𝑖 − (𝒇𝒇𝑖𝑖 ∙ 𝒏𝒏𝑖𝑖) ∙ 𝒏𝒏𝑖𝑖� ∙ 𝑑𝑑𝑑𝑑

 

𝑆𝑆
. (10) 

Note the distinction between 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛 (𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡) and 𝑭𝑭𝑛𝑛 (𝑭𝑭𝑡𝑡): the 
latter refers to the component of the force vector integral, 
while the former represents the component of the force 
magnitude integral (not represents a physical force). 

The contact factor ranges between 0 and 1. Ideally, all 
elements on the contact surface should be sticking. However, 
in practice, incipient slip always exists. Therefore, the closer 
𝑐𝑐𝑓𝑓 is to 0, the more regions are in or near the slip state, and the 
closer the contact state is to macro slip. Using 𝑐𝑐𝑓𝑓  can 
effectively describe the contact stability and can be applied to 
grasping control. However, the friction coefficients of 
unfamiliar objects to be grasped are always unknown. Even if 
the friction coefficient is measured online through tactile 
sensing during the grasping, it usually takes tens of seconds 
[21]. Also, friction prediction in the incipient slip stage is often 
inaccurate (discussed in Section III-D). 

Therefore, the contact factor is more suitable for generating 
demonstrations to guide the robot in learning to grasp. For 
objects with prior information, grasp force control curves can 
be generated by maintaining a certain contact factor to avoid 
macro slip. As a result, the robot can learn the force-following 
strategy to grasp objects with similar friction characteristics. 

Based on the above discussion, we propose a strategy for 
generating force control demonstrations, as shown in Fig. 4(a). 
This strategy is not directly applied to grasping unknown 
objects but is used to collect force control data for grasping 
known objects, which the robot can then learn from. This 
concept is similar to imitation learning (also known as 
programming by demonstration) [30], but without human 
involvement, as the robot generates the expert data. 

This article focuses solely on the two-finger parallel 
gripper as the end-effector. A basic strategy of gentle grasping 

is to control the grasp force 𝐹𝐹𝑔𝑔 during the load phase based on 
the currently measured load force and its increment, making 
these two forces match (i.e., ensuring stable contact). As 
shown in Fig. 3, 𝐹𝐹𝑔𝑔 can be expressed as 

𝐹𝐹𝑔𝑔 = � (𝒇𝒇𝑖𝑖 ∙ 𝒛𝒛�) ∙ 𝑑𝑑𝑑𝑑
 

𝑆𝑆
= (𝑭𝑭𝑛𝑛 + 𝑭𝑭𝑡𝑡) ∙ 𝒛𝒛�. (11) 

During the transition between the load and lift phases, the 
object is already off the ground. At this point, the gripper 
should have reached the desired appropriate grasp force (i.e., 
the product of the safety margin and the minimum force).  

The first step involves the meticulous measurement of the 
friction coefficient of the known objects in the training set. 
The method is as follows: the object is grasped with a constant 
force and lifted from the ground, then suspended in the air for 
5 seconds. If no noticeable slip is observed during this process, 
the grasp force is slightly reduced. This process is repeated 
until the minimum grasping force is found. The ratio of the 
tangential force to the normal force at this point is precisely 
defined as the measured friction coefficient. Next, grasp force 
control is based on the following procedure: the robot contacts 
the object with a preload force 𝐹𝐹𝑔𝑔0 = 0.4𝑁𝑁. Then, during the 
load phase, the object is lifted slowly at a speed of 1 mm/s for 
3 or 4 seconds. At frame 𝑘𝑘, the tactile sensor can measure the 
force distribution 𝒇𝒇 and the contact geometry 𝑺𝑺, so 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡

𝑘𝑘  and 
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
𝑘𝑘  can be calculated based on Eqs. (1) and (9)-(10). Then, 

at frame 𝑘𝑘 + 1, the robot needs to attempt to control the grasp 
force 𝐹𝐹𝑔𝑔𝑘𝑘+1 so that: 

𝐹𝐹Target,𝑛𝑛𝑘𝑘+1 = 𝛽𝛽𝜇𝜇−1 ∙ max�𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑘𝑘 ,𝐹𝐹𝑚𝑚𝑘𝑘−1� , (12) 

 
Fig. 4. (a) Flow chart of force-control demonstration generation. (b) Flow 
chart of online force control based on the Dual-CNN network. 



  

where 𝐹𝐹𝑚𝑚𝑘𝑘−1  represents the maximum value in 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑘𝑘  and 

before frame 𝑘𝑘 + 1, and 𝐹𝐹Target,𝑛𝑛𝑘𝑘+1  represents the target 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
𝑘𝑘+1 . 

In Eq. 12, 𝛽𝛽  represents the safety margin. Initially, the 
grasping force is relatively small, and the tangential force 
increases rapidly, requiring a larger safety margin; as the 
grasping force gradually approaches the final target value and 
the tangential force increase rate decreases, a smaller safety 
margin is needed to prevent overshooting. Therefore, the 
safety margin is set as a time-dependent function: 

𝛽𝛽 = �
𝛽𝛽max,   if 𝑡𝑡 ≥ 𝑡𝑡𝑚𝑚

𝛽𝛽min +
𝛽𝛽max −𝛽𝛽min

1 + exp�−𝑘𝑘 ∙ (𝑡𝑡 − 𝑡𝑡bias)�
,   if 𝑡𝑡 < 𝑡𝑡𝑚𝑚

. (13) 

Eq. (13) uses a sigmoid function to non-linearly map the safety 
margin between 𝛽𝛽min  and 𝛽𝛽max . The parameters 𝛼𝛼 and 𝑡𝑡bias 
control the shape of the sigmoid curve, thereby adjusting the 
strategy for selecting the safety margin. Here, 𝑡𝑡  and 𝑡𝑡𝑚𝑚 
represent the camera frame count. The parameters were set as: 

𝛽𝛽max = 2,   𝛽𝛽min = 1.2,   𝑘𝑘 = 0.1,
𝑡𝑡bias = 20,   𝑡𝑡𝑚𝑚 = 180. (14) 

One remaining issue is the difference between 𝐹𝐹𝑔𝑔𝑘𝑘+1 and 
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
𝑘𝑘 , especially since the contact surface is not flat. Though 

the relationship between 𝐹𝐹𝑔𝑔𝑘𝑘+1 and 𝑭𝑭𝑛𝑛𝑘𝑘+1 (𝑭𝑭𝑡𝑡𝑘𝑘+1) is determined 
by Eq. (11), the uncertain nature of soft object’s deformation 
makes it impossible to predict the future relationship between 
𝑭𝑭𝑛𝑛𝑘𝑘+1 (𝑭𝑭𝑡𝑡𝑘𝑘+1) and 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛

𝑘𝑘+1  (𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑡𝑡
𝑘𝑘+1 ) at frame 𝑘𝑘. An alternative 

solution is to dynamically estimate the linear relationship 
based on historical information (under the assumption of a 
unidirectional correlation [21]): 

𝐹𝐹𝑔𝑔𝑘𝑘+1 =

⎩
⎪
⎨

⎪
⎧ 𝐹𝐹𝑔𝑔𝑘𝑘 ,   if   𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛

𝑘𝑘−1 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
𝑘𝑘

𝐹𝐹𝑔𝑔𝑘𝑘 + �𝐹𝐹𝑔𝑔𝑘𝑘 − 𝐹𝐹𝑔𝑔𝑘𝑘−1� ∙
𝐹𝐹Target,𝑛𝑛𝑘𝑘+1 − 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛

𝑘𝑘

𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
𝑘𝑘 − 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛

𝑘𝑘−1 ,

  if   𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛
𝑘𝑘−1 ≠ 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀,𝑛𝑛

𝑘𝑘

   . (15) 

For the same object, force control curves implemented 
according to the above strategy may vary little. To further 
enhance the diversity of the training data, we randomly vary 
the initial preload force within the range of 0.3 to 0.5 and 
adjust the grasping positions on the same object. Additionally, 
to eliminate the influence of the lifting speed on force control, 
we uniformly sample from the original data sequence to adjust 
the time intervals between adjacent data points. Ultimately, 
the implemented demonstrations cover as many feasible paths 
as possible to ensure sufficient diversity in the training data. 

C. Target Force Prediction and Online Force Control 
One advantage of prior-based force control demonstration 

is that it reduces reliance on temporal information. The 
generated reference force control follows a fixed strategy, so 
the collected data focuses on key contact states along the 
target path, avoiding trivial or unreachable states. In other 
words, subtle patterns and dependencies related to temporal 
sequences are already included in the demonstration. As a 
result, by sacrificing task generalization, the training process 

can focus on extracting spatial features. This approach is 
suited for small-sample, lightweight models, as it eliminates 
the need for continuous frame training, enabling effective 
performance with less data and simpler networks. 

The goal of training is to predict the target grasping force 
to be controlled at the next moment based on the data collected 
by the tactile sensor at the current moment. The overall 
architecture of the proposed target force prediction network is 
shown in Fig. 5. The input information to the network is the 
contact deformation measured by Tac3D (stored in the form of 
a 3-D coordinate field). We first map the displacement field to 
the 3-D distributed force field based on the method described 
in Section II-A. The region where the normal force exceeds 
the threshold value (set to 0.01 mm) is considered as the 
contact region. We suppress the values of the distributed force 
outside the contact region using graphics operations to reduce 
measurement noise at non-contact region. 

At the 𝑘𝑘-th moment, the coordinate and force samples are 
coordinated in the same format and fed into a Dual-CNN to 
extract features. The main reason for using CNNs is to ensure 
translation invariance. The CNN module comprises a stack of 
2 layers of Conv-BatchNorm-ReLU (CBR) and two pooling 
layers. The output features of the two CNN sub-networks are 
flattened and spliced, and the concatenated features are 
mapped to the force prediction using a multi-layer perceptron 
(MLP). A dropout operation with a rate of 0.2 is applied. 

The online grasping force control is implemented based on 
the control method shown in Fig. 4(b). First, a preload force of 
0.4 N is applied to the object. During the load phase, the robot 
slowly lifts the object at a speed of 1 mm/s. Meanwhile, the 
data collected by the Tac3D sensor is fed into the Dual-CNN 
model to generate the current target grasping force. The 
gripper adjusts and maintains the grasp force until the sensor 
gets new data. The control lag caused by algorithm processing 
time and communication delay does not exceed 50 ms. When 
the time reaches 4 seconds, or if the tangential force does not 
change significantly within 0.2 seconds, the final target grasp 
force is considered to have been reached. Finally, in the lift 
phase, the tactile sensor no longer collects data, and the object 
is lifted at a high speed of 10 mm/s (for grasping efficiency) 
while maintaining the final force from the load phase. 

 
Fig. 5. Diagram of the Dual-CNN network for target force prediction. 
Conv-BN-ReLU: convolution layer, batch normalization layer, and ReLU 
activation layer. FC-ReLU: fully connected layer and ReLU activation layer. 



  

III. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
The experimental platform is shown in Fig. 6(a). We used 

a Franka Emika robot arm and a custom-designed two-finger 
gripper with good force-following performance. Considering 
computational efficiency, only the readings from one Tac3D 
sensor were used. In the offline evaluation, all models were 
implemented by PyTorch and trained on a laptop with a 2.30 
GHz Intel i7-12700H processor and a GeForce 3060 GPU (6 
GB). For the online experiments, the whole pipeline was run 
on an Ubuntu 18.04 PC with a 3.6 GHz AMD Ryzen 5 
processor and a GeForce 1060 GPU (3 GB). 

Fourteen household items with different shapes, materials, 
and stiffness were used to collect data, as shown in Fig. 6(b). 
We added metal pieces on top of or inside lighter objects (e.g., 
objects 5, 9, and 13) to ensure they could not be easily lifted. 
Fig. 6(c) shows the measured friction coefficients of these 
objects using the method described in Section II-B. One 
hundred grasps were conducted for each object, and each 
process involved 90-120 tactile frames. 81,371 sets of 3-D 
deformation fields (inputs) and target forces (labels) were 
collected. We used 80% of this data for training and 20% for 
testing. The training involves 50 epochs with a batch size of 16. 
The network is trained using stochastic gradient descent (SGD) 
with a learning rate of 10−6 , and the Mean Squared Error 
(MSE) loss function and Adam optimizer are used. 

B. Offline Evaluation 
The result of the ablation study is shown in Table 1. We 

compared the Dual-CNN structure with a model containing 
only a single active CNN pathway. The difference is that the 
latter removes the physics-based force reconstruction module 
(i.e., only the CNN path with the 3-D coordinate field is used). 
As a result, the mean squared error loss (MSE Loss) increased 
by nearly seven times. Also, we examined the impact of kernel 
size and depth on the Dual-CNN, where the added layer 
followed the Conv-BN-ReLU (64, 5, 5) pattern. The results 

indicate that the impact of parameter and structural changes on 
the Dual-CNN is limited. Thus, the improvement achieved 
primarily stems from the physics-based mechanics module. 

We divided the true values of the target grasping force into 
ten intervals to evaluate the model’s performance across the 
entire range, from 0% to 100% of the maximum prediction 
result. The confusion matrixes are shown in Fig. 6(d). By 
comparing the diagonal trends in the figure, it can be seen that 
the target force estimated by the proposed model is positively 
correlated with the ground truth, and the model with force 
reconstruction module performs better. The results above 
demonstrate that the force reconstruction module effectively 
improves the accuracy of target grasping force prediction. 

C. Online Evaluation 
We conducted 30 online grasping experiments on objects 8 

to 12, respectively [see Fig. 7(a)]. The objects were unknown 
to the robot, and no safety margins were artificially set. 
Therefore, the targe force was automatically determined by 
the proposed model. Fig. 7(b) shows all experiments’ load- 
force/grasp-force states during the load phase. The discrete 
points of the same color represent the force states during the 
same grasping trial. We define safety boundaries and stability 
boundaries to describe the upper limit to prevent excessive 
grasp forces and a lower limit to prevent falling events. Both 
boundaries are determined based on the pre-measured friction 
coefficients but are not known as the prior information. 

 
Fig. 6. (a) Experimental platform. (b) Objects used for data collection. Objects 1-7 were used to train and test the model, 8-12 were used for online evaluations, 
and 13-14 were used for comparative experiments. (c) Mean and standard deviation of the friction coefficient estimated for each object. The horizontal 
coordinate is the serial number of each object in Fig. 6(a). (d) Confusion matrixes. Left: Dual-CNN (trained with deformation and force). Right: CNN (trained 
with deformation only). The more the data is concentrated on the diagonal, the better the prediction (accuracy score) is. 

TABLE I 
PERFORMANCE COMPARISON OF DIFFERENT METHODS 

Models MSE test loss / N2 
CNN (trained with deformation only) 0.0236 

Dual-CNN (3×3 kernels) 0.0037 

Dual-CNN (5×5 kernels) 0.0036 
Dual-CNN (decrease one layer) 0.0039 
Dual-CNN (increase one layer) 0.0054 

 



  

Out of all test cases, only object 9 experienced a single 
drop case (corresponding to the green discrete points in Fig. 
7(b) for that particular grasping attempt). In most cases, the 
force state can be maintained between the safety and stability 
boundaries during the process. The randomly selected force 
curves are shown in Fig. 7(c). The robot can quickly complete 
the load phase for different objects within 2~3 seconds. 
Despite some disturbance and delay, the proposed method still 
ensures that the change in grasp force remains synergistic with 
the shift in load force. Fig. 7(d) shows the final grasp force 

distribution for all sub-attempts. Most tests meet the 
requirements for gentle and stable grasping or slightly exceed 
the safety margin. Since actual objects cannot be broken by 
less than twice the minimum grasp force, such results are 
sufficient for the gentle grasping of most household objects. 

Besides, Fig. 7(b) shows that object properties affect the 
performance. Regarding shape, the force control performance 
for cylindrical objects (objects 9 and 12) is better compared to 
block-shaped objects (objects 8 and 11), which stems from the 
imbalance in handling object shapes in the training set. For 

 
Fig. 7. Online evaluation of grasp force control. (a) Schematic of the grasping process. (b) Evaluation of load-force/grasp-force status during the whole process. 
The safety boundary is the product of the minimum grasp force required to pick up the object and a safety margin (set to 1.6 in the experiments), and the 
stability boundary is defined as the minimum force corresponding to the current load force. (c) Force curve during the whole process. F-tan: load force. F-target: 
target grasp force (network output). F-grasp: actual grasp force. F-min: minimum grasp force to lift the object. (d) Statistical results of the final grasp force. 



  

lighter objects (e.g., object 8), the ideal grasping force was 
close to the initial preload force, resulting in more pronounced 
overshooting in the midsection of the force regulation curve. 
In contrast, heavier objects (e.g., object 10) require higher 
force, increasing the risk of the force state approaching the 
safety boundary. Regarding texture, although differences in 
friction coefficients have a minor impact on the method, rough 
surfaces reduce the accuracy of force prediction (e.g., object 
11). As for the grasp pose, since the training set only covers 
translational slip conditions, when significant pivot rotation 
occurs during grasping (e.g., object 9), the predicted force 
tends to be smaller, and the object is more likely to slip. 

D. Comparative Experiment 
The proposed method is compared with two typical force 

regulation measurement methods [see Fig. 8]. The first 
approach plans the force by estimating the friction coefficient 
online during the incipient slip, according to the details in [21] 
(with a preload force of 0.5 N). For the second one, we employ 
a slip feedback control strategy similar to [15] in a slip 
detector based on [19], [20]. Fig. 8(b)-(d) show the force 
curves for grasping objects with these methods, respectively. 
The blue dashed line represents the lower limit of the grasp 
force at each moment. The red dashed line represents the 
product of the minimum grasp force and a safety margin of 1.6, 
which indicates the acceptable maximum grasping force. 

The time required for force control in the second method is 
significantly longer (approximately 0.75 times) than that of 
the proposed method [see Fig. 8(c)]. During the incipient slip, 
the tactile features primarily come from sub-millimeter-scale 
skin deformations [2], which are less reliable due to 
measurement errors. Thus, the tactile sensor needs a certain 
preload process to collect sufficient data to fit the frictional 
coefficient. According to [21], a complete process typically 
takes over 20 seconds. Also, the results indicate that bias in the 
estimation of the frictional coefficient can lead to forces 
approaching the lower boundary during the grasping process. 

Fig. 8(d) illustrates the slip-based force control results. The 
grasp force curve exhibits a stepwise increase, as the controller 
raises the grasping force whenever slip is detected to prevent 
further slip propagation. The issue, however, lies in the fact 
that when a slip occurs, the object’s state is inherently unstable, 
causing the force curve to fall below the lower boundary at 
certain points. In other words, a simple slip detection model 
cannot ensure that the contact surface remains during the 
incipient slip phase. Besides, without prior information of the 
object, inappropriate force increments may cause the grasp 
force to exceed the safety boundary. The relationship between 
slip detection and force control requires either prior 
knowledge of the object or data-driven learning approaches. 

Compared to the other two methods, the advantage of 
force planning based on demonstrations lies in its adaptive 
adjustment. Even if the predicted force in the previous frame is 
too large or too small, the timely feedback provided by tactile 
sensing is reflected in the input, resulting in a force closer to 
the optimal value. Also, the heuristic method can offer prior 
knowledge about the task. As a result, the described method 
eliminates the need to measure the object’s characteristics 
online and can shorten the loading phase duration. 

IV. CONCLUSION 

This article proposes a method based on learning force 
reference trajectories for achieving stable and gentle grasping. 
We focus on how to generate ideal reference cases for grasp 
force control, and how to use a lightweight network in 
conjunction with physics-based force reconstruction. The 
strategy can predict the target force and generalize to unknown 
objects. Ablation experiments and online tests show the 
application of the described approach. 

The limitation of the described method is the dependence 
on the specific grasping action. The idea of imitation learning, 
while helping to avoid the complexity of learning on long 
time-series information, makes the process applicable only to 
lifting an object vertically from the ground. For objects off the 

 
Fig. 8. Comparative experiment of different methods. (a) Schematic of the grasping process. (b) Grasping based on the proposed method. (c) Grasping based on 
online friction coefficient measurement [21]. (d) Grasping based on a simple slip detection model. 



  

center of gravity that may rotate during the grasping, the 
network may need to be retrained to include more data related 
to rotational slip effects. For objects with particularly low 
coefficients of friction or soft structure, the method may not be 
able to adjust to the final target gripping force in a very short 
period of time. This phenomenon has also been mentioned in 
other works [24]. For example, when trying to grasp a frozen 
orange (friction coefficient of about 0.3) or a soft plush toy 
(the elastic modulus is lower than that of the sensor’s 
elastomer), this method fails due to out-of-distribution. 

Future work will consider the introduction of network 
modules capable of processing temporal information and 
explore techniques for generating differentiated force control 
demonstrations. Although this article focuses on applying 
lightweight models with limited data, learning from 
demonstrations without human input can also benefit from 
larger-scale frameworks such as vision transformers (ViT) for 
more complex tasks. Additionally, integrating visual and 
tactile information [31] or using reinforcement learning 
trained in simulation and real-world deployment [32] can 
process spatial-temporal features and improve accuracy by 
expanding the size and diversity of the training dataset. 
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