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A B S T R A C T 

Visuotactile sensing technology has received much attention in recent years. This article proposes a feature 
detection method applicable to visuotactile sensors based on continuous marker patterns (CMP) to measure 
3-d deformation. First, we construct the feature model of checkerboard-like corners under contact 
deformation, and design a novel double-layer circular sampler. Then, we propose the judging criteria and 
response function of corner features by analyzing sampling signals’ amplitude-frequency characteristics and 
circular cross-correlation behavior. The proposed feature detection algorithm fully considers the boundary 
characteristics retained by the corners with geometric distortion, thus enabling reliable detection at a low 
calculation cost. The experimental results show that the proposed method has significant advantages in 
terms of real-time and robustness. Finally, we have achieved the high-density (10.7 markers per mm2) 3-d 
contact deformation visualization based on this detection method. This technique is able to clearly record 
the process of contact deformation, thus enabling inverse sensing of dynamic contact processes. 
 

 
1. Introduction 

Robots have increasingly expanded their applications beyond factories 
and become part of our daily lives [1], [2]. This trend demands higher 
reliability and adaptability from robots to match human dexterity and 
autonomous interaction abilities [3]. Currently, a promising solution is to 
introduce tactile perception into robot sensing systems [4], [5]. Tactile 
perception compensates for local contact information that cannot be 
obtained by robot vision approaches and can improve the interaction ability 
of robots in complex environments. Among the various kinds of tactile 
sensors that have been studied, visuotactile sensors [6], also known as 
vision-based tactile sensors [7] or tactile image sensors [8], have gained 
significant attention in recent years. Specifically, visuotactile sensors 
measure the contact deformation of a soft elastomer (as the contact 
component) by visual methods, and reconstruct tactile characteristics from 
the deformation information based on mapping models. Such sensors are 
capable of obtaining various tactile properties such as contact geometry [9], 
texture [10], distributed force [11], and slippage [12], and have been 
successfully applied in robot grasping and operation tasks [13], [14]. 

Compared to other types of tactile perception technologies, the core 
advantage of visuotactile perception is its multi-mode sensing ability. By 
using the deformation of soft elastomers as the input, any type of 
mechanical contact characteristics can be theoretically reconstructed by 
designing appropriate mechanical models or training mapping relationships. 
For example, Lepora et al. used CNN to extract texture features from tactile 
images containing deformation information [10], GelSlim 3.0 calculated 
the 3-d force field from the deformation field using the FEM model of the 
soft elastomer [11], and Sui et al. proposed a method for detecting incipient 
slip based on deformation gradient [12]. Therefore, deformation can be 
selected as the original tactile information of vision-based tactile sensors. 

The denser the obtained deformation information, the higher the resolution 
of the tactile characteristics that can be reconstructed. It indicates that 
improving the density and completeness of deformation measurement is 
significant for enhancing the performance of visuotactile sensing. 

The marker displacement method (MDM) [15] is a common method for 
visuotactile deformation measurement. A series of dot or spherical markers 
(i.e., marker pattern) are prepared on the inner side of the soft elastomer. 
Under the illumination of internal light sources, when the elastomer 
deforms, the movement of the markers can be captured by the built-in 
cameras of the sensor to form tactile images containing deformation 
information. This process can be seen as a discrete sampling of contact 
deformation by marker patterns. Besides, Li et al. proposed a new pattern 
design: continuous marker patterns (CMP) [16], [17]. CMP adopts the 
feature distribution with two-dimension continuity to increase the density 
of the original tactile information representation. Corner features in CMP 
have higher recognition accuracy than discrete speckles, which is similar to 
the performance in the planar calibration pattern that has been proved in 
[18]. Besides, since the rigid connection relationship (i.e., state topology) 
is built between the marker features in the pattern space, CMP can also 
improve the process stability during the marker tracking. 

However, although the previous work of CMP [16] has solved the basic 
problem of pattern design and ensured CMP’s advantages in terms of 
precision and reliability, the difficulty of feature detection under high 
density and complexity will still disturb the improvement of representation 
density [17]. On the one hand, as the density of markers increases, the 
detection algorithm’s computational complexity for each image frame 
increases. On the other hand, the geometric distortion of dense and complex 
features under contact deformation is difficult to be recognized. Thus, there 
is still room for improvement in the extraction algorithm, especially in real-
time and robustness, to achieve dense 3-d deformation sensing. 
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We notice that the marker patterns used in visual calibration and 
localization tasks and those in visuotactile sensing tasks have a certain 
similarity. For the feature detection of marker patterns represented by 
checkerboard-like patterns, there have been mature and classic works in the 
field of camera calibration [19]-[21]. The easy-to-detect characteristic of 
the checkerboard-like design makes this type of marker pattern widely used 
in high-precision localization. However, the existing corner detection 
methods are mainly applied to plane marker patterns. Wang et al. proposed 
a corner detection method for checkerboard marks on curved surfaces, but 
this pattern is also used for smooth plates that are not deformable [22]. In 
contrast, the marker pattern is always under dynamic deformation in 
visuotactile perception. Thus, the damage to the marker features caused by 
the deformation is significantly greater than the impact of camera noise, 
blur, and barrel distortion in visual calibration. In addition, compared with 
the enthusiasm for accuracy in visual calibration tasks, visuotactile sensing 
focuses more on real-time and reliable recognition. Due to the difference 
between the detection scenarios and performance requirements of the two 
tasks, it is necessary to customize an adaptive feature extraction method for 
visuotactile sensing. 

This article proposes a simple and effective method for feature detection 
of checkerboard-like CMP, which can be used in retro-graphic sensing of 
dense contact deformation. This method does not rely on training data and 
can be directly applied to different designs of CMP-based visuotactile 
sensors. The main works and contributions of this article are as follows. 
 We construct the feature model of the checkerboard-like CMP by 

comparing the visuotactile sensing tasks and the visual calibration and 
localization tasks. 

 We design the new sampling strategy and corner detector to achieve 
candidate filtering, corner detection, and refinement based on the 
quantization processing of sampled signals. 

 We use the Tac3D 3.0 experimental platform to verify the accuracy 
and robustness of the proposed detection method through comparative 
experiments. The experimental results show that compared with 
existing methods, the proposed method in this article has significant 
advantages in robustness and achieves real-time performance that 
meets the relevant task requirements. 

The remainder of this article is organized as follows. Section 2 proposes 
the requirements of CMP-based visuotactile sensing through comparative 
analysis and offers a novel corner model and relevant sampling strategies 
to adapt to the new scenario. Section 3 introduces the details of the proposed 
detection method, mainly including sampling mode, numerical analysis of 
feature quantization, and the design of the rapid detector. Section 4 
describes the comparative experiments evaluating the proposed method and 
existing approaches, especially in robustness and real-time performance. 
Also, the dense visualization of 3D contact deformation based on the 
introduced feature detection has been demonstrated. Finally, Section 5 
summarizes this article. 

2. Detection tasks and feature model 

2.1. Visuotactile sensing tasks 

Visuotactile sensing is a retro-graphic sensing technology that measures 
contact characteristics online. A soft elastomer is used as the contact 
medium, and its deformation during contact is regarded as the original 
tactile information to be detected. For visuotactile sensing with marker 
pattern, when the contact occurs, the elastomer’s deformation can be 
characterized by the markers under the illumination of LED and collected 

by the camera in the form of optical signals, as shown in Fig. 1(a). Each 
available feature in the marker pattern is equivalent to a sampling point for 
deformation information. Therefore, in addition to corners, the edge lines 
of the checkerboard also need to be used as features to enhance the density 
of tactile information representation [16]. Besides, due to the demand for 
dense perception, it is needed to increase the density of feature information 
in the marker pattern of visuotactile sensing. 

Similar to visuotactile sensing, visual calibration and localization is a 
typical scenario that uses distinct and stable pattern features which should 
be robustly and accurately recognized and located by cameras. Generally, 
the checkerboard pattern is printed on a rigid board or projected on a screen 
and is guaranteed to be in the camera’s field of view. By using the camera 
to measure the corner coordinates and organize the corner points, the spatial 
position and posture of the checkerboard can be obtained, as shown in Fig. 
1(b). They can be used to calibrate the internal and external parameters of 
the camera [23] or to locate the device carrying this camera [24]. Since the 
purpose of visual calibration and localization tasks is to obtain precise 
coordinates of interest points, and using dense patterns is not necessary, 
only corners with prominent features are used as markers usually. Even if 
the edge lines of the checkerboard are detected, it is only used to refine the 
coordinates of the corners [22] or to assist the structure recovery [25]. 

Unlike visual calibration and localization, the compacted marker 
pattern in visuotactile sensing is always in dynamic deformation. Fig. 1(c) 
shows some cases of deformation effects on CMP. Since the contact tends 
to change the geometric shape of the pattern units, the deformed corner 
features no longer meet the symmetry and projection transformation 
relationship. Larger deformation may even cause the patterns printed on the 
contact surface to overlap, driving color blocks around corners to be 
distorted and disconnected [17]. These distortions caused by contact 
deformation significantly increase the difficulty of feature detection and 
reduce the upper limit of accuracy carried by corner features in original 
images. As the density of the feature increases, the size of a single marker 
unit decreases, and this distortion tends to be more severe. Therefore, 
compared with visual calibration and localization, the tasks of visuotactile 
sensing are more concerned with the robustness of measurement and allow 
the sacrifice of precision to ensure reliability in the case of large 
deformation. 

Based on the above analysis, it can be noted that there are significant 
differences [see Table 1] between the two detection tasks, mainly in two 
aspects: 
1) Scenes and objects. 

In visual calibration and localization tasks, the checkerboard-like 

 

Fig. 1. Scenario comparison. (a) Visuotactile sensing. (b) Visual 
calibration and localization. (c) Examples of feature distortion that are 
affected by contact deformation. 
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pattern to be detected can usually form a regular and stable image on the 
camera plane, which enables the frequently-used detection technologies 
based on the preset template [20], central symmetry [21], self-correlation 
[25], vertical symmetry [26], or vanishing point [27]. Even if the calibration 
plate is curved, the pattern’s quadratic form under projective transformation 
can remain nondegenerate, and the corresponding approaches (such as 
template matching) are still applicable [22]. In contrast, the situation faced 
by visuotactile sensing tasks is more complex. Due to the unknown 
deformation mode of the marker pattern during contact, the corresponding 
detection algorithm needs to process the pattern image with dynamic 
structural deformation. These factors increase the difficulty of detection and 
make it hard for these prior-based methods to be effectively applied. 
2) Performance requirements. 

The nature of the task determines that the primary indicator of visual 
calibration and localization is accuracy. However, for visuotactile sensing, 
the sub-pixel quality of image features is usually not guaranteed [see Fig. 
1(c)], which could reduce our expectations for the attainable accuracy of 
detection algorithms. In contrast, to achieve a high density of 3-d 
deformation representation, the real-time performance and reliability of 
visuotactile detection require particular attention. It means that in order to 
achieve dense 3D deformation measurement, the feature detection of CMP 
should focus on quickly and robustly obtaining a large number of corner 
markers with an acceptable accuracy that makes do. 

The above differences indicate that the existing visual calibration and 
localization methods are not directly applicable to visuotactile sensing tasks. 
A feasible solution is to design suitable network architectures for specific 
vision-based sensors and achieve effective detection based on data-driven 
technologies [28]. However, such approaches rely on effective data samples 
to train the network, which could result in increased costs and reduced 
versatility. For simplicity and universality, this article proposes a detection 
method based on a feature model and sampling strategy specially designed 
for the visuotactile sensing task. 

2.2. Corner Model and Sampling Strategy 

2.2.1 Corner model in visual calibration and localization 
The distinctive characteristics of checkerboard corners in visual 

calibration and localization tasks make it possible to describe them using 
strong corner models. Different from the most “natural” corners [29], 
checkerboard corners meet good symmetry. Existing research used corner 
models to describe the pixel distribution that conforms to corners, enabling 
corner detectors to localize them on specific pixels. Duda et al. described 
corners as black and white sectors with characteristics including centerline 
sand crossed edges [21]. Krüger et al. [30], Yang et al. [26], and Spitschan 

et al. [31] defined their corner models using the angle of two intersecting 
edges and considered the impact of lighting and blurring on the 2-d intensity 
signal of a single corner. For an ideal corner model, we can summarize the 
following components, as shown in Fig. 2(a): 
 Symmetrical sectors (black and white). The pixels around a corner 

can be binarized and mapped to four sector regions Zi  and satisfy 
central symmetry. 

 Two angle parameters. Each corner is located at the intersection of 
the sector edges. Since the total angles of adjacent black and white 
sectors are always 180, only two angles α1, α2 are needed to describe 
the distribution of the four edges. 

2.2.2 Corner model in visuotactile sensing based on CMP 
Section 2.1 illustrated that the distortion and error of corner images in 

visuotactile sensing are more significant. Compared to lighting and camera 
noise, the impact of contact deformation on marker pattern causes a greater 
deviation between real and ideal corners. In other words, using a corner 
model in visuotactile sensing tasks that can cover all impact factors to 
achieve accurate positioning is often unrealistic. Therefore, the main issue 
that the corner model needs to solve is to analyse imaging laws that contain 
light and noise rather than to define geometric features of CMP that can be 
maintained even under dynamic deformation. 

Based on the analysis of the real corners shown in Fig. 1(c), we propose 
the corner model specific to visuotactile sensing based on CMP, as shown 
in Fig. 2(b). The geometric features in this corner model do not meet 
symmetry due to the compromise with contact deformation, but can still be 
used to describe the ideal imaging of corners in a certain deformation state. 
We emphasize three important components: 
 Corrosion region. The neighborhood near each corner tends to have 

significant noise, distortion, and even information loss due to the 
impact of deformation. We define the region within a certain radius 
near the corner as a corrosion region 𝑅𝑅𝑍𝑍, which means that the pixels 

Table 1 
Comparison of visual calibration & localization and visuotactile sensing tasks. 

Characteristics or requirements Visual calibration and localization Visuotactile sensing based on CMP 
Pattern Type Rigid checkerboard-like pattern Elastic checkerboard-like pattern 

Detection object Corners Dense corners and grid-lines 
Detection purpose Planar location Contact deformation measurement 
Detection scenario Unstructured environment Structured environment 

Requirements 
(relatively) 

High Accuracy Robustness and real-time capabilities 

Middle Robustness Fineness 

Low Real-time capabilities and Fineness Accuracy 

 

 

Fig. 2. Corner models. (a) Visual calibration and localization, (b) 
Visuotactile sensing based on CMP. 
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in this area could not provide corner characteristics and localization 
information. The presence of corrosion regions could increase the 
difficulty of corner refinement. 

 Four angle parameters. Marker patterns are usually coated or filled 
on a soft surface. During the deformation of soft elastomers, corners 
are hard to maintain connectivity and symmetry. Therefore, we need to 
use four angles α1, α2, θ1, θ2 to describe each boundary between black 
and white as the region feature. The loss of connectivity and symmetry 
means that corners in CMP could not be determined by the intersection 
of edges [32] and the saddle point of the gray-scale intensity profile 
[33]. 

 Edge points and intersection points. There are two special types of 
points on the boundary of the black and white sectors. One is the 
intersection pi of two adjacent boundary lines, and the other is the edge 
points qi that sample the edges at the same distance from the corner. 
Since the connecting lines between these points denote edges, they can 
be used to reflect the boundary feature of corners. 

2.2.3 Multi-layer circular sampler 
The characteristics of the above corner model could add significant 

obstacles to the algorithm’s implementation of visuotactile sensing based 
on CMP. Due to the presence of corrosion regions, corner filtering and 
correction cannot adapt the approaches based on pixel values (such as pixel 
intensity or polynomial fitting). The four angle parameters rather than two 
make the corner image difficult to be quantitatively described and solved. 
Therefore, ideas based on autocorrelation (such as symmetry) or template 
matching cannot be followed. The sector edges cannot maintain linear 
configuration during the deformation, thus making the detection based on 
Hough transform ineffective. Such issues could make most of the 
recognition and refinement techniques used in camera calibration and 
localization regrettably unusable. 

Even if the corner does not satisfy the symmetric and junction model 
because of deformation, the boundary feature defined by the edge lines is 
able to remain identifiable and stable. One valuable idea for such 
requirements is using a sampling circle similar to the FAST detector [34]. 
For detectors designed for checkerboard-like patterns, existing research has 
focused on the grayscale-changing characteristic of the circular sampling 
boundaries. Sun et al. used rectangular windows to transform the 2-d pixel 
distribution near each corner into a 1-d binary vector [35]. Bennett et al. 
proposed the single-layer ChESS detector, which can detect corner features 
using the overall response values [36]. Bok et al. used sign-changing 
indicators to determine corners in the dense single-layer sampling circle 
[37]. Zhang et al. described pixel intensity distribution in the ChESS 
detector as a square wave with two periods [38]. 

The circular sampling mode eliminates redundant information within 
the black-and-white sectors and focuses directly on the boundary feature in 
corner models, which is particularly suitable for visuotactile sensing. On 
this basis, we further emphasize the following three sampling strategies: 
 Multi-layer sampling. Under deformation, the edge images appear as 

curves, thus a single-layer sampler may not fully reflect the boundary 
feature. 

 Equidistant sampling. It ensures rotational invariance for detection 
under camera projective transformation. 

 Continuous sampling. It ensures that the sampling vector covers every 
orientation around each corner. 

Based on the above sampling strategy, this article designs the 
corresponding samplers for diagonal filtering and refinement steps, and 
implements a vision-based tactile sensing approach based on CMP through 

topology connection, pattern recovery, and matching. The details are 
introduced in Section 3. 

3. Methodology 

3.1. Approximate condition 

Corner filtering judges whether a pixel belongs to a corner based on 
related quantitative indicators (determined by the corner model), finds the 
pixel regions that may be corner points, and adds them to the candidate 
queue. According to the analysis in Section 2, the quality of corners in 
visuotactile sensing is poor, and therefore the screening criteria need to be 
relaxed to improve the robustness of detection. To compromise the 
characteristics of the ideal corner model to the actual situation, we introduce 
two approximate conditions as the basis for sampler design: 
1) Binary form. 

We recommend using binarization to process images and classifying all 
pixels as white or black (mapping the grayscale value to 255 or 0). The 
intention of this approximation lies in ignoring the pixel value of the corner 
image but paying attention to the boundary features at the boundary of the 
black and white sectors. This process could improve the sensitivity to low-
quality corner points at the expense of localization accuracy. 

In existing studies, layer-scope threshold methods were used to reduce 
noise in the circular boundary vector. For example, Sun et al. used the mean 
value of pixels in the vector as the threshold [35], while Bok et al. used the 
average of the maximum and minimum pixels in the vector as the threshold 
[37]. However, layer-scope threshold methods have poor noise suppression 
under uneven color conditions. The 1-d image binarization ignores pixels 
in the domain of corner candidates that do not belong to the loop, thereby 
amplifying the negative effects of noise on the jump characteristics. In 
contrast, the black-and-white pattern format highlights the detail retention 
effect of CMP in 2-d image binarization. As shown in Fig. 3, our brief 
evaluation show that using adaptive threshold binarization to process 
images directly can achieve cleaner results (using the proposed corner 
filtering method introduced in Section 3.4). 
2) Integer form. 

We recommend sampling and calculating only at the pixel level to 
reduce the amount of unnecessary computation. Bok et al. extracted a dense 
circular boundary vector around the corner candidate, and the coordinates 
of the samples were calculated by bilinear interpolation at the sub-pixel 
level [37]. This approach can improve accuracy in iterative refinement. 
However, the large loss of original information in distorted corner images 
makes it difficult to enhance measurement by calculating subpixel sampling 
points. A pixel-level approximation is necessary to consider the trade-off 
of computational overhead and revenue. 

 

Fig. 3. Comparison of binarization schemes. (a) Original image. (b) Result 
of layer-scope threshold method. (c) Result of adaptive threshold method. 
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3.2. Sampler strategy and design 

The core of corner filtering is the double-layer circular sampler shown 
in Fig. 4(a). We adopt the sampling mode with a radius of 3 pixels for the 
inner layer, similar to the Fast detector [34]. For the outer layer, we use a 
design similar to the ChESS detector with a radius of 5 pixels [36]. In each 
layer of the proposed sampler, it is possible to obtain sampling pixels that 
are approximately consistent with the distance and angular distance from 
the center, equivalent to a 1-d circular sequence of 16 pixels in length. Such 
sampling mode can downsample the 2-d intensity distribution in the corner 
model into two sets of 1-d image signals [see Fig. 4(b)].  

Note that the two sampling circles are used simultaneously in the corner 
filtering process. Bennett et al. believed that since the inner circle was 
closer to the corrosion region, it could provide almost no beneficial 
response compared to the outer ring. Therefore, it is appropriate only to use 
a single circle [36]. This conclusion is correct for visual calibration and 
localization tasks. However, the analysis in Section 2 has shown that the 
lack of connectivity and symmetry in the corner image could cause 
deviations in the responses obtained from different layers in visuotactile 
sensing tasks. Besides, contact deformation may not necessarily impact the 
inner layer more than the outer layer. In other words, adopting the multi-
layer sampling strategy can adapt to more stringent detection conditions by 
introducing boundary features that are less affected by geometric distortion. 
Based on this analysis, our design is closer to the approach of Sun et al. 
[35]. Inspired by Bennett et al. [36], we try to improve image processing 
speed by selecting the smallest possible number of sampler layers (two 
layers). 

The proposed double-layer sampler can also meet the other two 
sampling strategies (equidistant and continuous) mentioned in Section 2.2.3. 
For equidistant sampling, although it is not guaranteed that each sampling 
point has the same distance from the center, the proposed circular structure 
can already obtain acceptable sampling results in a discrete pixel grid. This 
property can be explained by Bresenham’s algorithm [39]. If different sizes 
of circles are needed depending on the optical system used, we also 
recommend designing the sampler according to the pixel arrangement of 
the Breseham circle. For continuous sampling, the inner layer of the Fast-
like sampler adopts a complete circular path, while the outer layer of a 
ChESS-like sampler has gaps. It has been explained in [36] that a ChESS-
like sampler can already meet the optimal partition spacing, and adding 
additional samples will increase unnecessary computational complexity. In 
addition, the two sampling layers have the same length of sequence, which 

allows us to define the inter-layer feature response by directly comparing 
the similarity of two sets of vectors. Such information cannot be obtained 
by single-layer sampling. 

The size of the sampler we choose depends on the requirement of 
visuotactile density characterization. If the size is too small, the sampled 
pixels may fall into the corrosion region, making it unable to respond to the 
boundary feature of the corners. Besides, when the size is too large, the 
sampling range may overlap with other marker units, resulting in incorrect 
responses. Therefore, the inner and outer layers have different tendencies 
during the detection: the inner layer is the benchmark and main executor of 
corner filtering. It has a small size (3px) and is close to the corrosion area, 
and requires strict evaluation to prevent misjudgments. The outer layer is 
larger (5px) and is more likely to overlap with other contours. Thus, a more 
relaxed boundary feature evaluation standard is needed to reduce false 
corners from noise. 

In addition, like other circular templates, our sampler adopts a fixed size 
and does not have scale invariance. An inspiring solution is using the image 
pyramid scheme similar to the ORB algorithm [40]. By setting a scaling 
factor and the number of layers of the pyramid, the original image is 
reduced or enlarged to multiple images according to the scaling factor. In 
these images of different proportions, feature points are extracted, and the 
set of results with the closest number of feature points to the true value is 
used as the final candidate corner points. Although we did not use it in 
application since the proposed sampler could already meet the requirements, 
this strategy in other optical systems can be considered. 

3.3. Feature quantification 

Section 3.2 determines the sampling mode of the double-layer circular 
ring, which means that the available image information is simplified into 
two sets of binarized 1-d circular sequences [see Fig. 5 (a)]. On this basis, 
the main idea for judging corner features is to find quantitative indicators 
that comply with the corner model proposed in Section 2.2. Such indicators 
need to have the following characteristics: 
 They are less affected by perspective projection transformation and 

contact deformation. 
 They can effectively distinguish corners from other features. 
 The response function corresponding to the indicators is positively 

correlated with the intensity of corner features. 
In this article, we propose both intra-layer criterion and inter-layer 

criterion. The intra-layer standard is used to quantify the corner features 
described by the boundary features of the sampled signals within the same 
layer, and the response function is determined by the amplitude-frequency 
characteristic of the sequence [see Fig. 5 (b)]. The inter-layer criterion 
describes the corner features defined by the relationship between the two-
layer sampling sequence, and we use the analysis method of circular cross-
correlation to provide the judgment [see Fig. 5 (c)]. The proposed response 
functions can effectively express the characteristic attributes that CMP 
corners can maintain during contact deformation. 

3.3.1 Intra-layer criterion 
Consider an ideal CMP corner model according to Section 2.2. Take a 

corner as the center, and sample clockwise on a circle. As shown in Fig. 6 
(a), a continuous sampling signal 𝑓𝑓(𝜃𝜃) can be obtained. According to the 
characteristics of the corner model, the definition domain length of 𝑓𝑓(𝜃𝜃) is 
2π, the value is 1 or 0 (take the black value as one and the white value as 
zero), and 𝑓𝑓(𝜃𝜃)  contains two rectangular window signals with unequal 
widths. Without loss of generality, we take the midpoint of the first 

 

Fig. 4. Sampler for corner filtering. (a) Sampler design. (b) Sampling mode, 
two coupled boundary vectors. 
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rectangular window as the origin. Let the widths of window signals be 2𝜏𝜏1 
and 2𝜏𝜏2, respectively, which meet the requirements 

0 < 𝜏𝜏1 < 𝜋𝜋
2

, 0 < 𝜏𝜏2 < 𝜋𝜋
2

, 0 < 𝛼𝛼 < 𝜋𝜋. (1) 

Therefore, 

𝑓𝑓(𝜃𝜃) = 𝑢𝑢(𝜃𝜃 + 𝜏𝜏1)− 𝑢𝑢(𝜃𝜃 − 𝜏𝜏1) + 𝑢𝑢(𝜃𝜃 + 𝜏𝜏2 − 𝛼𝛼) (2) 

−𝑢𝑢(𝜃𝜃 − 𝜏𝜏2 − 𝛼𝛼), 

where 𝑢𝑢 denotes the Step Function, and 

𝑢𝑢(𝜃𝜃 − 𝜃𝜃0) = �1, 𝜃𝜃 ≥ 𝜃𝜃0 
0, 𝜃𝜃 > 𝜃𝜃0

. (3) 

We perform the Fourier transform on 𝑓𝑓(𝜃𝜃), and obtain the frequency 
spectrum function 

 

Fig. 5. Feature quantization. (a) Sampling sequence of the double-layer circular vectors. (b) Intra-layer criterion. (c) Inter-layer criterion. 

 

Fig. 6. Numerical analysis of the intra-layer sequence. (a) A function expression of the sampled signal. (b) The amplitude intensity variation of sampled 
signals at different frequencies. (c) Simplification: only the orientation deviation of black sectors is considered. (d) Simplification: only the length deviation 
of black sectors is considered. 
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𝐹𝐹(𝑗𝑗𝑗𝑗) = � 𝑓𝑓(𝜃𝜃) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗
+∞

−∞
= 𝜏𝜏1 ∙ 𝑆𝑆𝑆𝑆(𝑗𝑗𝜏𝜏1) 

+𝜏𝜏2 ∙ 𝑆𝑆𝑆𝑆(𝑗𝑗𝜏𝜏2) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗, 
(4) 

Where 𝑆𝑆𝑆𝑆 represents the Sampling Function. Therefore, 

     |𝐹𝐹(𝑗𝑗𝑗𝑗)| = 𝑗𝑗−1 ∙ 

�𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏1)2 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏2)2 + 2 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏1) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏2)𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗𝛼𝛼). 
(5) 

Equ. (5) describes the relationship between the amplitude, frequency, 
and corner parameters of the circular sampling signal. For the corner points 
with the most obvious features (orthographic projection and no geometric 
distortion), 𝜏𝜏1 = 𝜏𝜏2 = 𝜋𝜋/4  and 𝛼𝛼 = 𝜋𝜋  should meet. For actual corners, 
although contact deformation could cause some deviation in the corner 
parameters, it should still be within a reasonable range. For example, when 
𝜏𝜏1 or 𝜏𝜏2 is too small, the sampling center should be judged as a false corner 
caused by noise and removed. 

As shown in Fig. 6 (b), we change the values of 𝜏𝜏1, 𝜏𝜏2, and 𝛼𝛼 to analyse 
the amplitude intensity variation of the sampling signal at different 
frequencies. The amplitude diagram superimposed by the two window 
functions is presented as a multi-level wave peak from 0Hz to the flank. 
Note that as the parameters change, the abscissa of the secondary peak can 
be maintained within the range of 1Hz to 3Hz: 
 As shown in Fig. 6(b1), fix 𝜏𝜏1 = 𝜏𝜏2 = 𝜋𝜋/4 and change the value of 𝛼𝛼. 

This set of parameters is selected to represent the impact of the relative 
azimuth deviation of sectors on the amplitude intensity (using black 
sectors as a reference unless otherwise mentioned). When the deviation 
between 𝛼𝛼 and the ideal value 𝜋𝜋 does not exceed 𝜋𝜋/3, the abscissa of 
the secondary peak is stable within the 1-3Hz range and close to 2Hz 
(i.e., the yellow region). It means that the amplitude at 2Hz is greater 
than that corresponding to 1Hz and 3Hz. Besides, as 𝛼𝛼 deviates from 
the ideal value 𝜋𝜋, the abscissa of the secondary peak deviates from the 
2Hz, and the ordinate decreases. It manifests as the difference between 
the amplitude at 2Hz and amplitudes at 1Hz or 3Hz gradually reducing. 

 As shown in Fig. 6(b2), fix 𝜏𝜏2 = 𝜋𝜋/4, 𝛼𝛼 = 𝜋𝜋, and change the value of 
𝜏𝜏1. This set of parameters is selected to represent the impact of the 
relative length deviation of sectors on the amplitude intensity. When 
the deviation between 𝜏𝜏1  and 𝜏𝜏2  does not exceed 𝜋𝜋/3 , the above 
relationship also satisfies. 

 As shown in Fig. 6(b3), fix 𝜏𝜏1 = 𝜏𝜏2 = 𝜏𝜏 , 𝛼𝛼 = 𝜋𝜋, and change the value 
of 𝜏𝜏. This set of parameters is selected to represent the impact of the 
length of sectors on the amplitude intensity. The above change trend 
still holds true when the deviation between 𝜏𝜏 and the ideal value 𝜋𝜋 does 
not exceed 𝜋𝜋/4. 

The above numerical analysis results indicate that the performance of 
secondary peaks in the sampled signal’s amplitude map is enlightening for 
corner judgment. The closer the secondary peak is to the 2Hz position on 
the horizontal axis (and the larger the vertical axis value), the more the 
sampling center conforms to the corner features. Therefore, we can use the 
D-value of amplitude intensity 

∆𝑓𝑓12= |𝐹𝐹(2𝑗𝑗)|− |𝐹𝐹(1𝑗𝑗)|, 

∆𝑓𝑓23= |𝐹𝐹(2𝑗𝑗)|− |𝐹𝐹(3𝑗𝑗)|, 
(6) 

as the intra-layer corner response. The purpose of choosing difference 
instead of ratio here is to avoid divergence. As the value of corner features 
related to the intra-layer criterion decreases, ∆𝑓𝑓12  and ∆𝑓𝑓23  also decrease, 
and could be less than 0 when the feature response is low to a certain extent. 
It means that selecting a reasonable threshold can exclude candidate points 
with lower corner features, thus effectively distinguishing strong feature 
points from false response corners generated by noise. 

We further analyse the rationality of ∆𝑓𝑓12 and ∆𝑓𝑓23, and the threshold 
selection by considering the sampling results under two simplified 
scenarios: 
1) Only consider azimuth deviation. 

Let 𝜏𝜏1 = 𝜏𝜏2 = 𝜏𝜏. According to Equ. (5), 

|𝐹𝐹(𝑗𝑗𝑗𝑗)| = �2𝑗𝑗−1 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏) 𝑐𝑐𝑐𝑐𝑠𝑠 �1
2
𝑗𝑗𝛼𝛼��, (7) 

where 0 < 𝜏𝜏 < 𝜋𝜋/2 and 0 < 𝛼𝛼 < 𝜋𝜋. And therefore, 

�
𝐹𝐹(1𝑗𝑗)
𝐹𝐹(2𝑗𝑗)�

= �
2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏) 𝑐𝑐𝑐𝑐𝑠𝑠 �1

2𝛼𝛼�
𝑠𝑠𝑠𝑠𝑠𝑠(2𝜏𝜏) 𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼) � , (8) 

�
𝐹𝐹(3𝑗𝑗)
𝐹𝐹(2𝑗𝑗)�

= �
2 𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏) 𝑐𝑐𝑐𝑐𝑠𝑠 �1

2𝛼𝛼�
3 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜏𝜏) 𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼) � , (9) 

The function images of equations (8) and (9) are shown in Fig. 6(c). The 
yellow region with a vertical coordinate less than 1 represents ∆𝑓𝑓12> 0 or 
∆𝑓𝑓23> 0. It can be seen that when the deviation between 𝜏𝜏 and the ideal 
value 𝜋𝜋/4 is within a reasonable value (approximately 𝜋𝜋/9), the values of 

�𝐹𝐹(1𝑗𝑗)
𝐹𝐹(2𝑗𝑗)

� and �𝐹𝐹(3𝑗𝑗)
𝐹𝐹(2𝑗𝑗)

� are relatively less affected by 𝜏𝜏. At the same time, when 

the deviation of 𝛼𝛼 from the ideal value 𝜋𝜋 exceeds approximately 𝜋𝜋/4, the 

values of �𝐹𝐹(1𝑗𝑗)
𝐹𝐹(2𝑗𝑗)

� and �𝐹𝐹(3𝑗𝑗)
𝐹𝐹(2𝑗𝑗)

� exceed 1 and increasing rapidly. The above 

results indicate that the selected response quantity is sensitive to the 
azimuth deviation 𝛼𝛼, but has a higher tolerance for changes in the overall 
length of black sectors. This selective difference helps to suppress 
candidate corners far from the center (within the white sector) while 
retaining the true corners that have become “thin” or “fat” in their sector 
due to stretching deformation. 
2) Only consider length deviation. 

Let 𝛼𝛼 = 𝜋𝜋. Without loss of generality, set 𝜏𝜏1 ≥ 𝜏𝜏2. From Equ. (5), 

|𝐹𝐹(𝑗𝑗𝑗𝑗)| = � 𝑗𝑗
−1 ∙ |𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏1) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏2)|,   𝑗𝑗 is odd

𝑗𝑗−1 ∙ |𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏1) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗𝜏𝜏2)|,   𝑗𝑗 is even
, (10) 

where 0 < 𝜏𝜏2 < 𝜏𝜏1 < 𝜋𝜋/2. Define 𝑇𝑇 = 𝜏𝜏1 + 𝜏𝜏2 and 𝛿𝛿 = 𝜏𝜏1 − 𝜏𝜏2, and thus 

�
𝐹𝐹(1𝑗𝑗)
𝐹𝐹(2𝑗𝑗)�

= �
𝑠𝑠𝑠𝑠𝑠𝑠 �1

2𝛿𝛿�

𝑠𝑠𝑠𝑠𝑠𝑠 �1
2𝑇𝑇� 𝑐𝑐𝑐𝑐𝑠𝑠(𝛿𝛿)

� , (11) 

�
𝐹𝐹(3𝑗𝑗)
𝐹𝐹(2𝑗𝑗)�

= �
2 𝑐𝑐𝑐𝑐𝑠𝑠 �3

2𝑇𝑇� 𝑠𝑠𝑠𝑠𝑠𝑠 �
3
2 𝛿𝛿�

3 𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇) 𝑐𝑐𝑐𝑐𝑠𝑠(𝛿𝛿) � , (12) 

The function images of equations (8) and (9) are shown in Fig. 6(c). The 
yellow region with a vertical coordinate less than 1 represents ∆𝑓𝑓12> 0 or 
∆𝑓𝑓23> 0. It can be seen that 𝑇𝑇 has little impact on the values of ∆𝑓𝑓12 and ∆𝑓𝑓23, 

but the values of �𝐹𝐹(1𝑗𝑗)
𝐹𝐹(2𝑗𝑗)

� and �𝐹𝐹(3𝑗𝑗)
𝐹𝐹(2𝑗𝑗)

� exceed 1 and increasing rapidly when 

the deviation between 𝛿𝛿 and the ideal value 0 is within a reasonable value 
(approximately). It means that the selected response quantity is also 
sensitive to the length deviation 𝛼𝛼. This selective difference helps suppress 
candidate corners far from the center (within the black sector) while 
retaining the true corners as above. When ∆𝑓𝑓12= 0 and ∆𝑓𝑓23= 0 are selected 
as the thresholds, candidate points with low confidence that have a length 
deviation approximately 𝜋𝜋/4 can be reliably filtered. 

The above discussion proves that use  ∆𝑓𝑓12 and ∆𝑓𝑓23 as the intra-layer 
response variables of corners (such as requiring ∆𝑓𝑓12> 0 and ∆𝑓𝑓23> 0) can 
effectively describe the characteristics of ideal CMP corners. For images 
that have already been binarized, when the center of the sampler falls on 
other types of features, it would exhibit vastly different response. When the 
center is located on the edge line, the spectrum amplitude at 1Hz is always 
greater than the amplitude at 2Hz (i.e., ∆𝑓𝑓12< 0) [38]. When the center is 
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located in a uniform area, the spectrum amplitude is all 0 at 1Hz, 2Hz, and 
3Hz positions. Although uneven lighting and noise exist in actual digital 
images, the 3Hz amplitude tends to be greater than the 1Hz amplitude since 
the amplitude corresponding to higher frequencies has a greater response to 
noise (i.e., ∆𝑓𝑓23< 0). 

For the discrete sampler in actual use, the sampling signal can be 
represented as a sequence 𝑔𝑔(𝑠𝑠)  with a length of 16, and each element 
represents the grayscale value of a sampling point (after binarization). By 
using discrete Fourier transform (DFT), the spectral characteristics can be 
expressed as 

|𝐹𝐹(𝑘𝑘𝑗𝑗)| = �∑ 𝑔𝑔(𝑠𝑠) ∙ 𝑊𝑊16
𝑖𝑖𝑖𝑖15

𝑖𝑖=0 �, 

where 𝑊𝑊16 = 𝑒𝑒−𝑗𝑗
𝜋𝜋
8 ,   𝑘𝑘 ∈ [0, 15], 

(13) 

and |𝐹𝐹(𝑘𝑘𝑗𝑗)| denotes the amplitude of the sampled signal at kHz. The intra-
layer response value of corners can still be defined as ∆𝑓𝑓12= |𝐹𝐹(2𝑗𝑗)| −
|𝐹𝐹(1𝑗𝑗)| and ∆𝑓𝑓23= |𝐹𝐹(2𝑗𝑗)|− |𝐹𝐹(3𝑗𝑗)|. Besides, according to Fig. 6 (c) and 
6 (d), ∆𝑓𝑓12= |𝐹𝐹(2𝑗𝑗)| ∙ (|𝐹𝐹(2𝑗𝑗)|− |𝐹𝐹(1𝑗𝑗)|) and ∆𝑓𝑓23= |𝐹𝐹(2𝑗𝑗)| ∙ (|𝐹𝐹(2𝑗𝑗)|−
|𝐹𝐹(3𝑗𝑗)|) can also be selected to increase the sensitivity of the response 
values. It also helps to improve the suppression of false corners from noise 
in smooth regions. 

3.3.2 Inter-layer criterion 
Take a corner as the center, and sample clockwise on a double-layer 

circumference, two sets of continuous signals 𝑓𝑓1(𝜃𝜃)  and 𝑓𝑓2(𝜃𝜃)  can be 
obtained as shown in Fig. 7(a). Section 2.2.2 mentions that the corner model 
of CMP-based visuotactile sensing does not has connectivity and symmetry. 
Therefore, there may be some deviation in the function images of 𝑓𝑓1(𝜃𝜃) and 
𝑓𝑓2(𝜃𝜃). Without loss of generality, we take the midpoint of first rectangular 
window of 𝑓𝑓1(𝜃𝜃)  as the origin. Let the midpoint position of the first 
rectangular window of 𝑓𝑓2(𝜃𝜃) be 𝑑𝑑. Let the widths of window signals be 

2𝜏𝜏11 and 2𝜏𝜏12, respectively, and their center-to-center distance be 𝛼𝛼1. Let 
the relevant parameters in 𝑓𝑓2(𝜃𝜃) be 2𝜏𝜏21 , 2𝜏𝜏22 , and 𝛼𝛼2 . Therefore, the 
sampled signal can be represented as 

𝑓𝑓1(𝜃𝜃) = 𝑢𝑢(𝜃𝜃 + 𝜏𝜏11)− 𝑢𝑢(𝜃𝜃 − 𝜏𝜏11) + 𝑢𝑢(𝜃𝜃 + 𝜏𝜏12 − 𝛼𝛼1) 

−𝑢𝑢(𝜃𝜃 − 𝜏𝜏12 − 𝛼𝛼1), 

𝑓𝑓2(𝜃𝜃) = 𝑢𝑢(𝜃𝜃′ + 𝜏𝜏21)− 𝑢𝑢(𝜃𝜃′ − 𝜏𝜏12) + 𝑢𝑢(𝜃𝜃′ + 𝜏𝜏22 − 𝛼𝛼2) 
−𝑢𝑢(𝜃𝜃′ − 𝜏𝜏22 − 𝛼𝛼2), 
where 𝜃𝜃′ = 𝜃𝜃 − 𝑑𝑑. 

(14) 

For the corners with the most obvious features (orthographic projection 
and no geometric distortion), 𝑓𝑓1(𝜃𝜃) and 𝑓𝑓2(𝜃𝜃) should be equal. The more 
significant the degree of geometric distortion, the greater the difference 
between 𝑓𝑓1(𝜃𝜃)  and 𝑓𝑓2(𝜃𝜃) . This property inspires us to use the circular 
cross-correlation function to describe the inter-layer relevance of double-
layer sampled signals: 

𝑅𝑅1,2(𝜑𝜑) = ∫ 𝑓𝑓1∗(𝜃𝜃) ∙ 𝑓𝑓2∗(𝜃𝜃 − 𝜑𝜑)𝑑𝑑𝜃𝜃+∞
−∞ , (15) 

where 𝑓𝑓1∗(𝜃𝜃)  and 𝑓𝑓2∗(𝜃𝜃)  represent the periodic extension of 𝑓𝑓1(𝜃𝜃)  and 
𝑓𝑓2(𝜃𝜃) (the extended intervals are the definition domains of two signals, 
respectively), and 𝑅𝑅1,2(𝜑𝜑) represents the circular cross-correlation function 
between sampled signals after periodic extension. Since 𝑓𝑓1∗(𝜃𝜃) and 𝑓𝑓2∗(𝜃𝜃) 
are all real functions, 𝑅𝑅1,2(𝜑𝜑) = 𝑅𝑅2,1(−𝜑𝜑)  always hold, which means 
relying solely on 𝑅𝑅1,2(𝑡𝑡) can describe the similarity between two sets of 
periodic sampled signals. 

In an ideal situation, the angle parameters should meet 𝜏𝜏11 = 𝜏𝜏12 =
𝜏𝜏21 = 𝜏𝜏22 = 𝜋𝜋/4, 𝛼𝛼1 = 𝛼𝛼2 = 𝜋𝜋, and 𝑑𝑑 = 0. At this point, the maximum 
value of the circular cross-correlation function (i.e., the cross-correlation 
coefficient) is located at 𝜑𝜑 = 0, and the minimum value is located at 𝜑𝜑 =
±𝜋𝜋. As shown in Fig. 7(b), we change the values of some angle parameters 
and analyse the variation of the circular cross-correlation function: 

 

Fig. 7. Numerical analysis of the inter-layer sequence. (a) A function expression of the sampled signal. (b) The amplitude intensity variation of sampled 
signals at different frequencies, using different parameters. 
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 As shown in Fig. 7(b1), fix other parameters and change the value of 
𝑑𝑑. As 𝑑𝑑 increases, the cross-correlation coefficient gradually deviates 
from the coordinate origin, and the variation of the phase coordinate is 
proportional to 𝑑𝑑. It means that the phase shift at the maximum position 
can be used to describe the impact of the overall shift between two sets 
of signals on circular cross-correlation. When the phase shift reaches a 
certain level (i.e., the misalignment of signals is significant), the 
sampler may span different marker units at this time, and the sampling 
center should not be considered a true corner. 

 As shown in Fig. 7(b2), fix other parameters and change the value of 
𝜏𝜏22 . When 𝜏𝜏22  increases, the cross-correlation coefficient decreases 
accordingly. Therefore, the cross-correlation coefficient can be used to 
describe the impact of length deviation. When the reduction reaches a 
certain level (i.e., the similarity of signals is weak), the sampler may 
locate at a uniform area with noise, and the sampling center should not 
be considered a true corner. 

 As shown in Fig. 7(b3), fix other parameters and change the value of 
𝛼𝛼. As the value of 𝛼𝛼 increases, the phase shift and amplitude decrease 
at the maximum cross-correlation value coexist. In this case, the 
symmetry and similarity between the two sampled signals can be 
described by phase shift and cross-correlation coefficient, respectively. 

The above discussion proves that the phase shift and cross-correlation 
coefficient of the circular cross-correlation function can be used to describe 
the inter-layer corner response, which can be expressed as 

∆A= 𝑅𝑅1,2(𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚), 

∆𝜑𝜑= �
𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,𝑙𝑙 + 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟

2 � , 
(16) 

where 𝑅𝑅1,2(𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚) expresses the cross-correlation coefficient. 𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,𝑙𝑙  and 
𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟  represent the left and right endpoints of the interval where the cross-
correlation function takes its maximum value, respectively. The maximum 
value exists in an interval because binarized signals may show successive 
step-shaped results when solving for circular cross-correlation [see Fig. 
7(b3)]. As the value of corner features related to the inter-layer criterion 
decreases, ∆A decrease accordingly while ∆𝜑𝜑 increase accordingly. Based 
on the results in Fig. 7 (b), we suggest using ∆A> 0.75 and ∆𝜑𝜑< 20° as the 
judgment criterion to filter out false corners from noise. 

For the discrete sampler in the application, the sampling signals can be 
represented as 𝑔𝑔1(𝑠𝑠)  and 𝑔𝑔2(𝑠𝑠) , with the same length of 16 and each 
element represents the grayscale value of a sampling point (binarized). The 
circular cross-correlation function between two discrete signals can be 
calculated as 

𝑅𝑅1,2(𝑘𝑘) = ∑ 𝑔𝑔1∗(𝑠𝑠) ∙ 𝑔𝑔2∗(𝑠𝑠 + 𝑘𝑘)15
𝑖𝑖=0 ,   𝑘𝑘 ∈ [0, 15], (17) 

where 𝑔𝑔1∗(𝑠𝑠) and 𝑔𝑔2∗(𝑠𝑠) represent the periodic extension of 𝑔𝑔1(𝑠𝑠) and 𝑔𝑔2(𝑠𝑠). 
At this point, the inter-layer corner response value can still be defined as 

∆A= 𝑅𝑅1,2(𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) and ∆𝜑𝜑= �𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,𝑙𝑙+𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟

2
�. 

3.4. Rapid corner filtering 

In Section 3.3, the intra-layer and inter-layer criterion for determining 
a CMP corner are obtained, and four corner feature response quantities are 
defined: ∆𝑓𝑓12, ∆𝑓𝑓23, ∆A, and ∆𝜑𝜑. In practical use, to avoid time-consuming 
mathematical calculations and meet the applicable requirement of real-time 
performance, the numerical analysis results of Section 3.3 can be used as a 
theoretical basis to design a simplified version of the fast corner filter. 

3.4.1 Simplified Intra-layer criterion 

1) Let the number of changes of black-and-white transitions in sampling 
sequence k be 𝑁𝑁𝑖𝑖. A candidate corner needs to meet 

𝑁𝑁𝑖𝑖 = ∑ 𝑠𝑠𝑖𝑖(𝑠𝑠)16
𝑖𝑖=1 = 4, (18) 

where  

𝑠𝑠𝑖𝑖(𝑠𝑠) = �1,   𝑔𝑔𝑖𝑖(𝑠𝑠) ≠ 𝑔𝑔𝑖𝑖(𝑠𝑠 + 1)
0,   𝑔𝑔𝑖𝑖(𝑠𝑠) = 𝑔𝑔𝑖𝑖(𝑠𝑠 + 1) , 𝑘𝑘 = 1, 2. (19) 

𝑔𝑔𝑖𝑖(𝑥𝑥∗) denotes the x-th element (binarization intensity of pixels) in the 
sampling sequence k, which satisfies 𝑥𝑥∗ = 𝑥𝑥 mod 16 (to describe a circular 
sequence). This criterion resembles Bok’s approach of selecting candidate 
corners using sign-changing indices [37]. Besides, practices show that 
although the corrosion region less blurs the outer sampling circle, it is more 
likely to cover the excess blocks since it is far from the sampling center. 
Therefore, we added a cropping strategy to the calculation of the outer 
sampling sequence 𝑔𝑔1, which can be expressed as 

𝑠𝑠1(𝑠𝑠) = �1,   𝑔𝑔1(𝑠𝑠) ≠ 𝑔𝑔1(𝑠𝑠 + 1) ∩ 𝑔𝑔1(𝑠𝑠) ≠ 𝑔𝑔1(𝑠𝑠 + 2) 
0,   𝑔𝑔1(𝑠𝑠) = 𝑔𝑔1(𝑠𝑠 + 1) . (20) 

Compared to Equ. (19), Equ. (20) adds tolerance for noise. On the one 
hand, we ensure that both sampling circles have the region feature of the 
four sectors in the CMP’s corner model. On the other hand, we filter out 
jump points with a spacing equal to one pixel, which cuts out small pseudo 
sectors (see the outer sampling circle in Fig. 5). 
2) For inner sampling sequence 𝑔𝑔2, Let the length difference between 
black and white sector pairs be 𝛿𝛿𝑏𝑏 and 𝛿𝛿𝑤𝑤. Quantify the overall difference 
as 𝛿𝛿2. A candidate corner needs to meet 

𝛿𝛿2 = 𝑚𝑚𝑆𝑆𝑥𝑥(𝛿𝛿𝑏𝑏 ,𝛿𝛿𝑤𝑤) < 𝛿𝛿th, (21) 

where 𝛿𝛿th is the selected threshold. From our experiment, 5 is selected as 
the threshold. The function of 𝑚𝑚𝑆𝑆𝑥𝑥(𝛿𝛿𝑏𝑏 ,𝛿𝛿𝑤𝑤)  is to replace the response 
quantities ∆𝑓𝑓12 and ∆𝑓𝑓23. From Fig. 6(c) and Fig. (d), the values of ∆𝑓𝑓12 and  
∆𝑓𝑓23 are determined by the azimuth and length deviations based on the black 
sector. The length deviation represents the length difference between two 
vectors belonging to the black sectors, while the azimuth deviation 
represents the relative length between the centerline of the black sectors. In 
practical applications, both azimuth deviation and length deviation occur 
simultaneously. When using the white sector as the benchmark, the azimuth 
deviation can be explained as the difference in the length of the white 
sectors. Therefore, these two types of deviation can be uniformly described 
as the size difference 𝑚𝑚𝑆𝑆𝑥𝑥(𝛿𝛿𝑏𝑏 ,𝛿𝛿𝑤𝑤) between sectors of the same color. The 
importance of this matter lies in avoiding time-consuming discrete Fourier 
transform. Practices show that the simplified intra-layer criterion has 
increased the computational speed by over 20 times. 

3.4.2 Simplified Inter-layer criterion 
In Section 3.3.2, we have proposed ∆A  and ∆𝜑𝜑  to describe the inter-

layer corner feature. However, when only ∆𝜑𝜑  changes while ∆A remains 
unchanged, although the maximum value of the cross-correlation function 
remains unchanged, the decrease of 𝑅𝑅1,2(0) is proportional to the increase 
of ∆𝜑𝜑 [see Fig. 7(b1)]. From Fig. 7(b2) and Fig. 7(b3), the change of ∆A 
could also be reflected in the decrease of 𝑅𝑅1,2(0). Since the variations of 
∆A and ∆𝜑𝜑 are simultaneous in applications, we can use only the reduction 
of 𝑅𝑅1,2(0) to approximate the symmetry and similarity between the two 
layers of sampled signals. 

Let the variance quantization of the two sampling sequences 𝑔𝑔1(𝑠𝑠), 
𝑔𝑔2(𝑠𝑠) be 𝐷𝐷1,2. A candidate corner needs to meet 

𝐷𝐷1,2 = ∑ 𝑔𝑔1(𝑠𝑠)⊕𝑔𝑔2(𝑠𝑠)16
𝑖𝑖=1 < 𝐷𝐷th, (22) 
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where ⊕ denotes XOR operation, 𝐷𝐷th is the selected threshold. 5 is chosen 
as the threshold according to our experiment. The advantage of using 𝐷𝐷1,2 
to approximate the inter-layer corner feature is that only a 16-bit XOR 
operation is required for each sampling center. The simplified intra-layer 
criterion can avoid the calculation of 16 times cross-correlation coefficients 
in Equ. (16) and increase the computational speed by more than 10 times. 

3.5. Corner detection and refinement 

Complete corner detection still faces an unresolved challenge: the 
above judgment criteria cannot distinguish a CMP corner from the center 
points of a stripe. Fig. 8 shows the detection effect when the sampling 
centers are located at a CMP corner and the center of a stripe, respectively. 
Both cases exhibit the same form judging only from the sampling sequence 
of the two sampling circles. It means relying solely on corner feature 
responses cannot distinguish between these two situations. This issue has 
also been discussed in the work of Bennett et al. [36]. Inspired by this 
research, we notice that the main difference between the two comes from 
the corrosion region. Although the discussion in Section 2.2 demonstrates 
that the corrosion region cannot provide sufficient credible details, we can 
use the overall characteristics of the entire area to reflect the level of 
corrosion: When the corrosion degree exceeds a certain value, it is 
considered that the sampling center may belong to a stripe feature rather 
than a corner feature. 

Let the number of black pixels be 𝑠𝑠𝑅𝑅  and the number of white pixels 
be 21− 𝑠𝑠𝑅𝑅 in corrosion region. Let the numbers of black and white pixels 
in outer sampling sequence 𝑔𝑔1(𝑠𝑠) be 𝑠𝑠1 and 16 − 𝑠𝑠1, respectively. When 
the corrosion degree 𝐶𝐶𝑑𝑑 meets the requirement 

𝐶𝐶𝑑𝑑 = 𝑚𝑚𝑆𝑆𝑥𝑥(𝑠𝑠1 − 𝑠𝑠𝑅𝑅 ,𝑠𝑠𝑅𝑅 − 𝑠𝑠1 − 9) < 𝐶𝐶𝑑𝑑𝑗𝑗ℎ, (23) 

the current candidate corner can be regarded as a CMP corner. Equ. (23) 
requires that the difference in the number of pixels of the same color 
between the outer sampling sequence and the corrosion region should not 
exceed the threshold 𝐶𝐶𝑑𝑑𝑗𝑗ℎ. For example, the corrosion degree 𝐶𝐶𝑑𝑑 of the two 
features in Fig. 8 can be calculated as 1 and 7, respectively. The larger the 
value of 𝐶𝐶𝑑𝑑, the greater the degree of blurring or uniformity within the 
corrosion region, and the more likely the sampling point is to be inside a 
stripe. The outer sampling circle is used because a large circle can better 
cover the outside of stripes, thus making the stripe feature sensitive to the 
response of corrosion degree. From our experiment, 4 is the preferred 
threshold value. 

The proposed corner filters using the conditions of Eqs. (18), (21), (22), 
and (23) can effectively filter out the candidate domains from the tactile 
images that have the potential to belong to the corners. Due to the 
characteristics of CMP, candidate domains are represented as clusters of 
connected domains located near the corners, as shown in Fig. 3(c). Bennett 

et al. argued that a corner detector should better provide process 
information rather than a Boolean-type response value [36]. Although the 
local threshold binarization method is used in this article, we approve that 
assigning an explicit response to each pixel in the acquired candidate 
domains can help us to locate the specific position of the corners accurately. 
We define the symmetrical response 𝑅𝑅 as 

𝑅𝑅 = 𝛿𝛿th − 𝛿𝛿2, (24) 

where the definition of 𝛿𝛿2  and 𝛿𝛿th  comes from Equ. (21). The inner 
sampling sequence is considered because it is closer to the sampling center. 
The symmetrical response 𝑅𝑅 reflects the symmetry of the corner sectors. 
The closer the sampling center to the corner, the smaller the value of 𝛿𝛿2 and 
the higher the response value 𝑅𝑅. After assigning a response value to each 
pixel in the candidate domains, we use the standard non-maximum 
suppression to discard low responses in a small neighborhood around each 
pixel in the response image, thereby retaining only the candidate corners 
with the highest response value. 

At this point, the integer pixel coordinates of each candidate corner 
point are determined. Although the discussion in Section 2.1 indicates that 
the accuracy requirement for CMP-based visuotactile sensing is not high, 
we still provide the refinement technique suitable for the feature of CMP 
corner to avoid incorrect positioning. Common refinement techniques 
include methods based on saddle-point [32], symmetric [25], and iterative 
(e.g., the function cornerSubPix in OpenCV). However, due to the presence 
of corrosion regions, such methods are not the optimal choice in situations 
where the geometric distortion caused by contact is large. 
 For saddle-point-based methods, the high noise in the corrosion region 

could cause the saddle-point approximation result hard to predict. 
 For iterative-based methods, when the corrosion degree is significant, 

the refinement result may approach one of the sharp cusps of the 
sectors (located on the periphery of the corrosion region). 

 For symmetric-based methods, since the CMP corner no longer 
possesses symmetry, the refinement results may be more biased toward 

 

Fig. 8. Comparison of two features with similar responses in the proposed 
sampler. (a) Corner feature. (b) Stripe feature. 

 

Fig. 9. Sampler for corner refinement. (a) Sampler design. (b) Sub-pixel 
localization based on midpoints. (c) Sub-pixel localization based on edge 
points. 
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the interior of the black or white sectors for corners with large azimuth 
offsets. 

Considering the above factors, we propose a refinement approach based 
on the midpoints. Corner refinement uses the three-layer sampler, as shown 
in Fig. 9 (a). Since the corner refinement process handles fewer data than 
corner detection, we can use more sampling information. Compared to the 
sampler for corner detection, the three-layer sampler adjusts the shape of 
the outer sampling circle. It adds a middle layer for interpolating 
information between the inner and the outer circles. The purpose of such 
modification is to ensure continuity in both the radial and lateral directions 
of the sampling. 

Fig. 9 (b) shows the process of refining corners using this method. Note 
that we are now considering the original tactile image rather than the 
binarized one. By searching for the edge points at the boundary of sectors 
in each layer of the sampler, the midpoints of two edge points in the same 
sector can be used as the sampling point for the sector centreline. Take the 
black sector as an example. We can fit the midpoint of three layers to obtain 
two sector centrelines and use their intersection points as the refinement 
result. The specific process includes: 
 In the binary image, find the integer pixel coordinates of all edge points 

in the three-layer sampler. 
 Return to the original tactile image, use Li’s sub-pixel correction 

method [16] or Gioi’s subpixel edge detection method [41] to calculate 
the subpixel coordinates of edge points based on the obtained integer 
coordinates. 

 Use the same sector’s edge points to calculate the sector’s midpoints, 
and use the linear or quadratic function equation to fit three midpoints 
to calculate the expression of a centreline. 

 Calculate the intersection point of the centreline of two black sectors. 
The intersection point is the refined corner position. 

In addition, in some cases, the calculated two centrelines may intersect 
within the black and white sectors or even be parallel. If the refined position 
is far from the original place (for example, take 2 pixels as the threshold), 
we suggest using another edge-point-based method to refine the corners 
[see Fig 9(c)]: 
 Use the linear or quadratic function equation to fit three edge points 

and calculate the expression of the edge line. 
 For the same sector, calculate the intersection point of two edge lines 

as the cusp point. 
 Calculate the midpoint of the line connecting two cusp points. The 

midpoint is the refined corner position. 
The core of the corner refinement method based on the midpoints or the 

edge points mentioned above is the boundary feature of the CMP corner. 
By utilizing the edge points obtained from the multi-layer sampler, corner 
position can be obtained through boundary fitting. Since this approach does 
not rely on pixel intensity in the corner neighborhood, it can effectively 
avoid the influence of corrosion regions. 

4. Experiments 

In this section, we used the Tac3D 3.0 sensor [17] to validate the 
robustness and efficiency of our proposed detection method through 
comparative experiments. The reconstruction and visualization of dense 3D 
contact deformation achieved by this approach were also demonstrated. The 
structure of Tac3D is shown in Fig. 10(a). The overall size was 90 mm × 
70 mm × 90 mm. Its body was made by 3D printing, and an RYS-1200-
Farbe-global camera (1600×1200 pixels) was selected to capture the 
contact deformation of the marker pattern. The soft elastomer, camera, LED 

light source, and metal mirrors were all fixed on the housing. The Tac3D 
sensor adopted the virtual binocular vision system (VBVS) [42] by means 
of the optical path structure shown in Fig. 10(b). Through clever optical 
circuit design, it could achieve binocular stereo vision using just one camera. 
Therefore, the Tac3D sensor enabled binocular measurements with high 
synchronization and had good compactness simultaneously. 

The soft elastomers of Tac3D were made of Shinbon silica gel with a 
base-to-curing agent ratio of 1:1 to obtain an appropriate hardness. They 
were designed to be removable to be easily replaced during experiments. 
We made three elastomers with different densities of CMP attached to them. 
All CMP sizes were 32mm × 32mm, and the sizes of their marker array 
were 20×20, 30×30, and 40×40, respectively [see Fig. 10(c)]. We selected 
different test objects (ball, torus, cube, rib, and wedge) to contact the soft 
elastomer of Tac3D. When the marker pattern deformed during contact, 
real-time photography was taken using the camera built into the sensor [see 
Fig. 10(d)]. By using the method proposed in this article and other baselines 
for detection on the same tactile image, the performance of different 
approaches could be fairly compared. All algorithms were implemented by 
C++ OpenCV, and ran on a computer equipped with an Intel i7-12700H 
processor at 2.30 GHz. 

4.1. Real-World robustness evaluation 

This section evaluates the robustness of the proposed method in CMP-
based visuotactile sensing tasks. The dataset used includes a total of 600 
tactile images and 580000 valid comer markers. We used five different 
shapes of objects and three different densities of CMP (size of marker array: 
20×20, 30×30, and 40×40). When the test object comes into contact with 
the Tac3D sensor equipped with the corresponding CMP, pressing, 
shearing, or twisting are performed in different contact modes. For the same 
object and CMP with the same density, 20 binocular tactile images are 
collected. Each image contains 800, 1800, or 3200 valid corners. 

Three reference methods were used to run for the same task to make a 
comparison with the proposed method: the ChESS detector [36], Zhang’s 

 

Fig. 10. Experimental setup for robustness and efficiency evaluation. (a) 
The structure of Tac3D 3.0 sensor [17]. (b) The virtual binocular vision 
system used in Tac3D [17]. (c) The detachable soft elastomers with 
different densities of CMP. (d) Example of an experiment. The contact 
between an object and the soft elastomer could be reflected in tactile images. 
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method [38], and Shi-Tomasi’s method [43] (using the function 
goodFeaturesToTrack in OpenCV). ChESS is a response graph-based 
circular detector that can achieve outstanding detection results when the 
threshold is selected appropriately. The method proposed by Zhang et al. 
introduces spectrum analysis in the ChESS detector, which is closest to the 
detection method proposed in this article. Shi-Tomasi’s method is a 
universal corner detection method, and we chose it to demonstrate the 
necessity of customizing the detection method for visuotactile perception. 

This evaluation used three indicators to reflect the effectiveness of 
different methods: Average False Positive (AFP), Average False Negative 
(AFN), and Success Rate (SR). Among them, AFP and AFN represented the 
average number of false and missed corners in the same tactile image, 
respectively. The larger the value of AFP and AFN, the worse the detection 
effect of the relevant method. When AFP or AFN exceeded 1 (i.e., not all 
corners are correctly detected), it was considered that the detection of that 
frame of tactile image failed. SR was used to describe the algorithm’s 
success rate in handling the test samples in the used dataset. 
The AFP and AFN indicators are only used to visually demonstrate the 
differences in different methods, while the SR indicator can better reflect 
the robustness of the processes in practical applications. To ensure fairness 
in comparison, we manually selected the optimal parameter combination 
for each of the four algorithms under different contact conditions, as shown 
in Table 2. The standards for parameter selection were such that 
the AFP and AFN indicators were small, along with a small gap 

between AFP and AFN. Therefore, the detected corners are neither too 
many nor too few. 

The Average False Positive and Average False Negative for each 
method are summarized in Fig. 11. The proposed method achieved the best 
detection results in all cases. On the experimental dataset, our algorithm 
held the AFP and AFN averaged 0.020 and 0.043, with an average of no 
more than 0.05 errors in a tactile image containing thousands of corners. In 
addition, the AFP and AFN of our method did not vary as significantly as 
the other three methods. When the array size of CMP is 20×20, both the 
ChESS detector and Zhang’s method could show more satisfactory 
performance, but the errors appeared significantly increase with the growth 
of CMP’s size. The reason is that the single-layer circular detectors could 
not identify the distorted corners with weak feature responses. Shi-
Tomasi’s method obtained similar detection results in the cases of 20×20 
and 30×30 array sizes, but a surge in errors occurred at the 40×40 array size. 
It implied that the corrosion degree had reached the upper limit of 
recognition of the universal detector as the marker density increased. The 
above discussion demonstrates that our method is less affected by the 
variation of CMP feature density than the other three methods and has good 
stability in the 3D deformation measurement with even high marker 
densities. 

The experimental results shown in Fig. 11 also indicate that different 
contact states could have impacts on the detection. The ChESS detector and 
Zhang’s method performed worse in smooth contact (ball and torus surfaces)  

Table 3 
Success rate (%) of the proposed method and reference methods (ChESS [36], Zhang et al [38], and Shi-Tomasi’s [43]). 

Algorithm 

Test object & Size of marker array 

Ball Torus Cube Rib Wedge 
Average 

202 302 402 202 302 402 202 302 402 202 302 402 202 302 402 

Proposed 100.0 100.0 100.0 100.0 100.0 97.5 100.0 100.0 92.5 97.5 97.5 92.5 97.5 95.5 92.5 97.53 

ChESS 77.5 12.5 20.0 90.0 10.0 10.0 92.5 27.5 25.0 75.0 22.5 22.5 77.5 22.5 35.0 41.33 

Zhang’s 92.5 2.5 0.0 87.5 12.5 0.0 87.5 20.0 0.0 90.0 22.5 0.0 90.0 22.5 0.0 35.17 

Shi-
Tomasi’s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 2 
Parameter selection for different methods. 

Method 
Variable parameter 

(Image grayscale: 0~255) 
Values selection for different CMPs 

202 302 402 

Proposed 
Window size of adaptive binary 40×40 px2 30×30 px2 20×20 px2 

𝛿𝛿𝑗𝑗ℎ, 𝐷𝐷th, 𝐶𝐶𝑑𝑑𝑗𝑗ℎ 5, 5, 4 

ChESS 
Threshold of overall response 0.35 0.50 0.70 

Radius of sample-ring 5 px (16 sample points) 

Zhang’s Threshold of |𝑓𝑓1|− |𝑓𝑓2| 1.80 2.15 2.45 

Shi-Tomasi’s 
maxCorners 800+168 1800+248 3200+328 

minDistance, qualityLevel 8, 0.01 

 



                                                                                                                   13 
 

  

 
Fig. 11. Evaluations of real-world robustness of the proposed method and reference methods (ChESS [36], Zhang et al [38], and Shi-Tomasi’s [43]) in 
practical applications, using five different test objects and three CMPs with different densities. Average False Positive and Average False Negative metrics 
were used to emerge performance differences. 
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compared to the sharp contact (cube, rib, and wedge surfaces). In contrast, 
Shi-Tomasi’s method exhibited the opposite characteristics. For the former 
case, the marker units of CMP were sheared by curved surfaces and 
generated tangential squeeze, reflected in the symmetry destruction of the 
corners. It made the methods (ChESS and Zhang’s) that were based on 
symmetry considerations prone to false positives. In the latter case, the 
marker units of CMP were stretched tangentially due to the compression of 
sharp surfaces, resulting in connectivity failure at the corners. In this case, 
the universal detection approach represented by Shi-Tomasi’s method is 
prone to detecting two positive results. Therefore, due to the simultaneous 
consideration of these two factors in the specific case of CMP-based visual-
tactile sensing, the robustness of the proposed method is significantly 
improved compared to the existing techniques. 

Compared to the latter two reference methods, the performance of the 
ChESS detector was close to that of the proposed method. On average, the 
ChESS detector could reach approximately 1.69 errors in a single tactile 
image. However, although the average number of mistakes in the ChESS 
detector is small, this does not mean that the reliability of the ChESS 
detector could reach a similar level as the proposed method. It is because 
any false or missed corners indicate detection failure. Table 3 shows 
the SR indicator for four different approaches. From the results, the success 
rate of the ChESS detector is closer to that of Zhang’s method, which is 
only 0.42 times that of our method. Therefore, our algorithm’s efforts in 
handling false positive and false negative responses are more evident in 
robust performance indicators. 

On the basis of previously considered algorithms, we have added some 
new reference methods: the Harris detector [44], Geiger’s method [20], the 
function findChessboardCorners in OpenCV and Duda’s method (using the 
function findChessboardCornersSB in OpenCV) [21]. In the qualitative 
experimental example shown in Fig. 12, both the proposed method and 
Geiger’s method correctly detected all corners. In contrast, the ChESS 
detector occuered both anomalies and omissions in the middle positions, 
while the algorithm proposed by Zhang et al. gave a large number of 
outliers in the area with obvious deformation and extrusion. The universal 
detectors (Harris’s and Shi Tomasi’s) also displayed poor performances. 

Corner omissions occurred at locations with uneven lighting, while a large 
number of abnormal results were found around the corners that had a 
significant corrosion degree (the separated sharp cusps are detected as two 
corners). For these complete visual calibration methods, due to the 
significant geometric distortion of the pattern units, the OpenCV method 
based on contour extraction, and Duda’s method based on Laplace 
transform could not run successfully. Overall, existing detection methods 
could result in many errors and might fail to detect the tactile images with 
dynamic deformation, while our method outperformed these competing 
algorithms in visuotactile sensing. 

It is worth noting that Geiger’s method also showed good detection 
performance, which seems to indicate that it has substitutability with the 
detection method proposed in this article. However, this performance is to 
some extent dependent on the complex judgment benchmark, which makes 
this method, time-consuming and unable to meet real-time requirements. 
The details are explained in Section 4.2. 

4.2. Computational efficiency evaluation 

To further evaluate the computational efficiency, we compared the 
average wall-clock execution time calculated by the different algorithms 
after processing the same VGA-resolution tactile image. Each method ran 
1000 times under the same hardware condition, and a single tactile image 
contained 1936 corner features to be detected. In this section, we considered 
four algorithms: the ChESS detecter, Shi Tomasi’s method, Zhang’s 
method, and Geiger’s method. All procedures were implemented through 
C++. Without special instructions, the code of different methods was 
ensured to work at the same optimization level as far as possible. 

The time spent results are shown in Table 4. Compared to Geiger’s 
method with similar detection results (according to), the proposed method 
can save nearly 800% of the time. Although Geiger’s approach could 
achieve ideal detection results, it failed to run in real-time as our method. 
Compared with Zhang’s method, which also considers the analysis of 
amplitude-frequency characteristics, our algorithm could avoid complex 
Fourier transform operations using the simplified fast detector. Compared 

 

Fig. 12. Feature detection results provided by the proposed method and reference methods (Geiger’s [20], ChESS [36], Zhang et al [38], Shi-Tomasi’s [43], 
Harris [44], the function findChessboardCorners in OpenCV, and Duda et al [21]). 
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to the ChESS detector and the universal corner detector Shi Tomasi’s, 
which have significant advantages in detection efficiency, our detection 
method used more sampling information and complex judgment indicators, 
resulting in a relatively slow running speed. However, this relatively small 
difference in speed was achieved with a higher success rate of 97.53% 
(Bennett’s and Shi-Tomasi’s had success rates of 41.33% and 0%, 
respectively). It means that the proposed method could achieve better 
detection performance while still meeting the real-time requirement in 
terms of operational efficiency. 

Note that the criteria for corner feature response in the proposed 
detection method are not strictly sequential, which means that parallel 
operations could effectively improve the computational speed. By parallel 
processing multiple pixels using OpenMP, the proposed method could 
achieve a running speed similar to the ChESS detector. Therefore, this 
detection method could handle tactile images containing 1936 feature 
points at approximately 200Hz. Such performance is far enough to meet the 
requirements of deformation measurement. 

4.3. Dense 3-d deformation measurement 

By combining with the work of Li et al. [16], dense 3-d contact 
deformation measurement was achieved. In the new detection process, the 

feature detection algorithm proposed in this article replaces the marker 
recognition step based on polygon fitting in [16], but retains the 
construction step of topological connection relationship based on contour 
information. By performing corrosion operations on the neighborhood of 
each corner, the marker units could be separated more accurately while 
reducing the loss of original details in high-density CMP. We also used the 
virtual marker points mentioned in [16] to perform discrete sampling on the 
edge lines of CMP. Three virtual marker points were selected between 
every two measured marker points. They could be used to characterize the 
deformation together with the measured marker points obtained using the 
proposed method. 

Fig. 13 shows the contact deformation visualization of five typical 
objects. Our method could reconstruct the contact deformation with clear 
details, whether under smooth or sharp contact characteristics. Due to the 
introduction of the detection algorithm proposed in this article, we could 
practically apply a 40 × 40 CMP in the Tac3D sensor to achieve a high-
density representation of an average of about 10.7 effective markers per 
square millimeter. It enabled us to attain ultra-fine contact deformation 
sensing that is difficult to achieve by other visuotactile sensors based on the 
marker displacement method. 

Besides, the dense 3-d deformation measurement we achieve should be 
understood as something other than 3-d morphology perception. As shown 

Table 4 
Time spent to perform the proposed method and reference methods (ChESS 
[36], Zhang et al [38], Shi-Tomasi’s [43], and Geiger’s [20]). 

Algorithm Average wall-clock time (ms) 

Proposed 8.351 

Proposed with OpenMP 4.951 

ChESS 5.041 

Shi-Tomasi’s 7.029 

Geiger’s 653.6 

Zhang’s 1313.5 

 

 

Fig. 13. Dense 3D deformation measurement based on the proposed 
method. Five different test objects were used. The red dots represent the 
measured marker points, and the black dots represent the virtual marker 
points. 

 

Fig. 14. Demonstration of dynamic contact sensing. (a) Squeeze and twist 
on the contact surface using a torus. (b) Reconstruction of dense 3-d 
displacement field (c) Orthographic projection view of the displacement 
field. 
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in Fig. 14, we used a torus-like object to contact the Tac3D sensor and 
applied positive pressure and torque. The method implemented in this 
article can clearly record the process of contact deformation in the form of 
a dense displacement field. Unlike static contact geometry, our approach 
could realize retro-graphic sensing of the dynamic contact process. It is a 
unique function that cannot be achieved by the photometric stereo method, 
the other dominant method in visuotactile sensors. 

4.4. Discussion and extension 

The experiments in Section 4.1 and Section 4.2 demonstrate that the 
proposed method has advantages in real-time and robustness, making it 
suitable for CMP-based visuotactile sensing with high information density. 
Compared with the reference methods, we use a double-layer circular 
sampler and propose corresponding intra-layer and inter-layer response 
indicators based on numerical analysis. Due to fully considering the 
properties of the corner model under dynamic deformation, the proposed 
method exhibited the best performance in resisting geometric distortions 
caused by contact behaviors such as squeezing and pulling. Finally, thanks 
to the effective application of this method in marker recognition, we 
successfully achieved dense 3-d contact deformation measurement. 

Compared with the mainstream digital image correlation (DIC) and 
optical flow method, the proposed approach for deformation measurement 
does not rely on tracking the deformation process. Using contour 
information between markers in CMP, we can construct a fixed topological 
connection relationship and assign the marker points an order number that 
does not change with the state. The above characteristics enable us to 
calculate the deformation relationship between any non-adjacent frames of 
images without the need for real-time tracking of the marker movement. In 
Fig. 14, we only used the 3rd, 5th, 9th, and 12th frame images to calculate 
the displacement field after the contact occurred. Suppose the digital image 
correlation method or optical flow method is used. In that case, the 
measurement may be invalid since the time interval is too large to judge the 
similarity of the sub-regions. The above advantages allow our method to be 
applied to scenes with more complex working conditions, such as 
calibrating structured light cameras. In addition, our process benefits from 
analysing the amplitude-frequency characteristics and cross-correlation of 
sampled information, and such an approach is also expected to expand to 
other types of marker patterns (such as the triangular chessboard [45]). 

However, in order to apply to tactile images with significant geometric 
distortion, our method focuses on loose and conservative judgment 
indicators. Meanwhile, due to the corrosion regions in CMP, our demand 
and attention for accuracy are lower than those works in the field of visual 
positioning. Therefore, the proposed in this article may not be suitable for 
camera calibration tasks with good imaging quality and large size of marker 
patterns. 

5. Conclusion 

This article proposes a feature detection method for dense 3-d contact 
deformation measurement. Our study starts by analyzing the characteristics 
and requirements of CMP-based visuotactile sensing tasks. Based on the 
proposed feature model, we design a multi-layer circular sampler to provide 
feature response to the CMP corner. It relies on the intra-layer criterion 
based on amplitude-frequency characteristics and the inter-layer criterion 
based on circular cross-correlation, which can effectively suppress different 
types of errors. Through comparative experiments on the Tac3D sensor, we 
evaluated the performance of the proposed method and demonstrated its 

optimal performance in actual practical use. Compared with existing feature 
detection methods, the proposed method exhibits more prominent real-time 
and reliability advantages in visuotactile sensors. 

The subsequent research will focus on further refining the method of 
visuotactile sensing based on continuous marker patterns. On the basis of 
the proposed method, the understanding and utilization of contour 
information will be further refined to achieve more comprehensive and 
applicable contact deformation measurements in more complex scenes. In 
addition, we are about to explore the applications of dense 3-d deformation 
visualization and extend our research contributions to human-computer 
interaction, interface science, and other fields. 
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