
  

  

Abstract— Tactile perception has been a hot topic of research 
in robotics. Robots sense the shape, material, distributed force, 
slip during contact, and use the multi-modal contact information 
to control grasping and manipulation. For vision-based tactile 
sensors, the contact representation and extraction determine the 
quality of the raw tactile information, and therefore serve a 
significant role in the robot perception system. This article 
highlights for the first time the importance of raw representation 
and extraction in visuotactile perception, and proposes a new 
multicolor CMP method for enhancing the performance of 
vision-based tactile sensors. Based on the principle of continuous 
marker pattern (CMP), the multicolor CMP method is 
optimized in the pattern and algorithm design. Regarding 
information representation, we present a new type of marker 
pattern based on RGB triangles and a preferred layout. In terms 
of information extraction, we propose a series of extraction 
strategies with the adaptive growing algorithm (AGA) and the 
spin-search algorithm (SSA) as the cores. The experiments 
reveal that the multicolor CMP method achieves improved 
precision and reliability compared to the former CMP method. 

I. INTRODUCTION 

The sensory system has long been an integral part of 
robotics. Robots interact with the external environment and 
receive information feedback from visual perception [1] and 
tactile perception [2]. Tactile sensors allow robots to acquire 
contact information directly, thus offering the possibility of 
highly reliable and adaptive robotic grasping and manipulation 
[3]. In recent years, different types of tactile sensors have been 
developed [4], [5]. Among them, vision-based tactile sensors 
(also called visuotactile sensors) [6], [7] are a class of sensors 
with the advantages of high-resolution and multi-modal 
perception, such as GelForce [8], GelSight [9], GelSlim [10], 
FingerVision [11], TacTip [12], and OmniTact [13]. These 
sensors use a soft elastomer to contact the objects. During 
contact, the deformation of the soft elastomer reflects the 
physical contact information and is converted into the optical 
signal using representation mediums. Finally, the optical 
signal is extracted by an image acquisition device. Contact 
information transformation, representation, and extraction are 
performed sequentially in the above process. Such sensors 
have been applied to geometry recognition [14], object 
localization [15], material identification [16], slip detection 
[17], and manipulation control [18], among other scenarios. 

The marker pattern method, also known as the marker 
displacement-based method [7], is commonly used in vision-
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based tactile sensors to represent and extract the contact 
information [see Fig. 1(a)]. A marker pattern is typically 
printed or embedded on the surface or inside the soft elastomer 
to provide texture information. When the soft elastomer is 
deformed by force, the movement of the pattern characteristic 
points, also called markers, can reflect the dynamic contact 
deformation. Thus, the representation of contact information 
can be realized. 

The extraction of contact information can be divided into 
two steps: marker recognition and marker tracking. Marker 
recognition identifies the markers and obtains their coordinates 
during deforming, while marker tracking means matching the 
corresponding markers in the adjacent camera frames (also 
known as image registration). Finally, the discrete information 
reflected by the markers can be transformed into a continuous 
field by interpolation, which serves as the basis for multimodal 
information reconstruction. 

Current implementations of such sensors mainly focus on 
the design of optical paths and structures [19], [20], algorithm 
optimizations [21], [22], and applications like robot control 
strategies [23], [24]. However, few studies have focused 
directly on the basic function of the tactile sensor, i.e., the 
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Fig. 1. (a) The multicolor CMP for high-precision contact representation. (b) 
Binocular tactile image of the visuotactile sensor. (c) The adaptive growing 
algorithm (AGA) and the spin-search algorithm (SSA) for high-reliability 
extraction. (d) The result of dense 3-d deformation reconstruction. 



  

contact information representation and extraction, which 
determine the quality of raw tactile information and play a 
decisive role in the performance of the tactile sensor. 
Therefore, we aim to go beyond the specific structure of 
sensors, directly study the mechanism of contact information 
representation and extraction, and provide theoretical support 
for the optimization and application of sensors. 

Our research focuses on improving the performance of 
tactile sensors through the optimization of contact information 
representation and extraction. We previously proposed an 
approach for representing contact information in vision-based 
tactile sensors, the method of continuous marker pattern (CMP) 
[25]. The proposed CMP is a concept rather than a fixed 
implementation of marker patterns, which allows us to achieve 
high performance through pattern and algorithm optimization. 

This article presents a new type of CMP, the multicolor 
CMP, and the related algorithms (AGA and SSA) to enhance 
the contact information representation and extraction of 
vision-based tactile sensors, as shown in Fig. 1. The main 
contributions include: 

1) We propose the multicolor CMP method for contact 
information representation and extraction of tactile sensors and 
provide the corresponding algorithm.  

2) Through experiments and evaluations, we verify that the 
proposed method can improve the precision and reliability of 
visuotactile sensing. Our work provides new ideas for the 
enhancement of vision-based tactile sensors. 

II. OPTIMIZATION OBJECTIVES 

In our previous work [25], the square CMP is selected as 
the generic CMP. It is a type of CMP with square blocks as 
the basic unit and a minimum of color combinations, which 
has the advantages of simple preparation and high versatility. 
However, in practice, this simple pattern has some problems 
in representation and extraction that need to be optimized. 

A. Representation: Optimization of pattern design 
The design of the marker pattern determines the feature 

mode of deformation visualization, thus affecting the quality 
of contact information representation. Here we propose two 
requirements to enhance the representational capabilities. 

1)   Precision 
As shown in Fig. 2(a), we use an arch-like object in the 

simulation to contact a soft elastomer with the square CMP, 
and use the related extraction algorithm to construct the 
contact geometry. Fig. 2(b) shows that the contact geometry 
need to be reconstructed better, especially at the location of the 
large deformation gradient. There are two main factors: 

The contact position is in the low-response zone. Imagine 
that a concentrated load f  acts on the contact surface. The 
closer the load position of  f  is to a certain marker, the larger 
the three-dimensional displacement of that marker point. 
Therefore, we can divide the area between four adjacent 
measured markers into three different zones according to the 
contact responsive ability [see Fig. 2(c)]. The response ability 
reflects the local resolution. Therefore, in the case of arch 
contact, the reactivity and local resolution are low since the 
proportion of low-response areas in the contact area is large. 

Singular angles exist in the representation. As shown in Fig. 
2(d), when the camera is located directly above the contact 
surface, no significant deformation of the depressed gridline 
can be captured in the camera’s field of view, resulting in 
missing reconstruction details. We refer to these angles as 
singular angles that can lead to representation failure. Due to 
the unknown camera position and light path, changing the 
overall angle of grid lines does not avoid this situation. 

Therefore, the grid lines should be staggered at different 
angles to avoid concentrated distribution of low-response 
zones and odd orientations, thus ensuring fine representation. 
2)   Robustness 

Due to the limitation of the preparation and the camera’s 
image blur, the corner points of the checkerboard grid always 
have different degrees of sticking [see Fig. 2(e), (f)]. The 
sticking phenomenon can produce redundant color blocks, 
seriously affecting the edge extraction and corner point 
recognition and making the subsequent algorithm processing 
difficult. Such inherent deficiency seriously affects the 
robustness of the information representation. 

The above discussion illustrate that the basic units of the 
pattern should be distinguishable and associated with good 
discriminative properties. Therefore, it is simpler to reduce the 
influence of the sticking through algorithms. 

 
Fig. 2. Problems in the former square CMP. (a) An arch in contact with the soft elastomer. (b) Comparison between simulated and reconstructed geometry. (c) 
Contact response zone of the square CMP. (d) Odd angle phenomenon. (e) A remarkable sticking case. (f) Edge extraction results with sticking phenomenon. 



  

B. Extraction: Optimization of algorithm design 
The algorithm design determines the contact information 

extraction. The optimization should focus on the accurate and 
complete acquisition of the contact information to ensure the 
extraction process’s reliability in general and specific cases. 
1)   Recognition accuracy 

Under the same condition, the recognition accuracy of 
algorithm determines the quality of the acquired contact 
information. The optimized algorithm should be able to 
guarantee sub-pixel recognition accuracy. 
2)   Recognition reliability 

Different interference factors, such as background colors 
and uneven external lighting, can lead to recognition errors. 
The optimized algorithm should minimize the range of feature 
recognition to exclude interference and ensure reliability. 
3)   Tracking reliability 

The contact information can only be captured correctly if 
the displacement of the marker during deformation can be 
tracked. If the algorithm’s reliability cannot be guaranteed, the 
potential of rigid tracking [25] in CMP could be difficult to 
manifest. Thus, optimizing the tracking strategy is necessary. 
4)   Special Cases 

In practice, when the contact load is large (such as large 
tangential force), the pattern edge could be difficult to visual 
distinguish since it is squeezed into a line or out of the effective 
camera’s view. In addition, interference from illumination and 
material defects in the soft elastomer may interfere with 
feature recognition, resulting in a loss of local information. 

Therefore, we suggest the seeded region growing method to 
the original contour-based algorithm to improve recognition 
accuracy and reliability. Besides, we introduce a mechanism 
of reference marker arrangement to the rigid tracking-based 
algorithm, which allows us to sort the markers more robustly 
and even handle the common marker omissions. 

III. MULTICOLOR CONTINUOUS MARKER PATTERN 

A. Pattern design 
Based on the three basic principles of CMP [25], we propose 

a new set of designs (the multicolor CMP), as shown in Fig. 3. 
1)   Colored units 

The basic unit of the multicolor CMP is colored triangles 
[see Fig. 3]. To address the limitations caused by sticking, the 

adjacent basic units are selected as red, green, and blue. 
Through this design, the difference in color gamut can be used 
to distinguish pixels belonging to different units, thus ensuring 
the precision of contour recognition. Besides, pattern units of 
the same color are separated in space. They can be more easily 
distinguished under different deformation and illumination 
modes than black-and-white units, allowing for high reliability 
in recognition when the marker patterns are pulled or squeezed. 

The black triangles are used to accentuate the light-color 
marker pattern and suppress the scattered light, which should 
be ignored during the extraction process since the RGB 
triangles already contain the grid lines. A triangle in the center 
of the marker pattern is set to white, which provides the 
starting point reference in the tracking algorithm. 
2)   Triangular units 

The triangular pattern (so-called Deltile) is one of the three 
regular tilings in the Euclidean plane. Compared to the square 
pattern, such design has higher precision and resistance to 
contact deformation as follows. 

By comparing Fig. 2(c) and Fig. 3(d), it can be seen that the 
triangular pattern has a more compact feature arrangement 
than the square pattern. Such a feature disperses the low-
response zones into different units to avoid a concentrated 
distribution. Each set of hexagon contains six grid-lines with 
different angles. Thus, even if one grid line is at an odd angle, 
the other five grid lines still work properly. Besides, the 
triangular pattern has been shown to have accuracy advantages 
in providing localization references. Ha et al. demonstrated 
that the richer constraint information provided by this pattern 
could contribute to accurate localization [26]. According to 
Bommes et al. [27], triangles are structurally flat and convex, 
and can be described qualitatively using the deviation from an 
equilateral triangle and the largest angle. These features make 
it more suitable as a 3D calibration primitive. 

The resistance to contact deformation can be quantified as 
the size of the internal corners of the pattern. As shown in Fig. 
4, the two main contact modes, pressing and twisting, 
respectively affect the shape change and rotation around the 
center of the marker unit. When the shape change is greater 
than 180°, the corner feature fails to be recognized; When a 
corner of the unit is rotated to cross the mid-line between 
adjacent corner points in the original pattern, the relative 
orientation change will cause the corner feature to be tracked 
incorrectly. For a regular n-sided shape, the threshold values 
for the deviation angle ∆1 and rotation angle ∆2 are 

 
Fig. 3. Pattern design of the multicolor CMP method. (a) Honeycomb. (b) 
Elliptical. (c) Round. (d) Contact response zone of the multicolor CMP. 

 
Fig. 4. The influence of contact deformation on marker patterns (a) Contact 
mode: Pressing. (b) Contact mode: Twisting. 



  

∆1 = 180°−
n − 2

n
∙180° = 

360°
n

, (1) 

∆2 = 90° −
n − 2

2n
∙180° = 

180°
n

. (2) 

When the angles are less than the related thresholds, the corner 
can still be recognized and tracked. From the above analysis, 
the larger ∆1 and ∆2, the higher the deformation that can be 
tolerated. Therefore, selecting a triangular shape with the 
minimum n can help improve reliability in visuotactile sensing. 
3)   Arrangement 

The multicolor CMP can be arranged like a honeycomb [see 
Fig. 3(a)], which is suitable for flatter contact surfaces. We can 
also use non-positive hexagonal shapes to make the mark 
pattern oval or circular [see Fig. 3(b), (c)]. This arrangement is 
more compact and can maximize the utilization of the pattern’s 
amplitude. The algorithms corresponding to the three styles are 
basically the same. In addition, we propose to let the hexagons 
be arranged in circle layers from the center outward. In this 
arrangement, the marker units are set in a good geometric 
regularity, which facilitates the design of inside-out numbering 
algorithms and correction algorithms for special cases. 

B. Algorithm design 
The information extraction algorithm of multicolor CMP 

includes marker recognition, marker tracking, and information 
supplementation. The algorithm process is shown in Fig. 5. 
1)   Marker recognition 

First, the RGB marker unites should be recognized from the 
redundant image information. Inspired by the classical seeded 
region growing method (SRG) [28] and its application in the 
segmentation of color images [29], we propose the adaptive 
growing algorithm (AGA) to avoid the sticking phenomenon 
and improve the recognition reliability [see Fig. 6]. 

Target area extraction. By the water diffusion algorithm 
and morphological operation, we extract the target zone an 
reduce the influence of the background by removing the pixels 
that do not belong to the marker pattern, as shown in Fig. 6(b). 

HSV color segmentation. We convert the image to the HSV 
color space format, use a mask to divide the area in the Hue 
channel to filter the color, and finally differentiate the RGB 

contours [see Fig. 6(c)]. Since the color distortion caused by 
illumination mainly affects the saturation and brightness, the 
color segmentation based on the Hue channel of HSV color 
space has good integrity and correctness. 

RGB seed selection. After removing the small fragments of 
noise and clutter, the geometric center of each domain is 
selected as the RGB seed for region growing [see Fig. 6(d)]. 

RGB region growing. Let S1, S2, …, Si denote the initial 
seeds, and Ai denotes the growing region corresponding to Si. 
Let the average color of pixels in Ai be (𝐻𝐻i���, Vi� , Si�). In this step, 
we form the region Ai based on the color difference, taking Si 
as the center and growing from inside to outside. 

Let the pixel P adjoin with Ai (consider 4-neighbors) and 
its color denotes (Hp

i , Vp
i , Sp

i ). The color difference between P 
and Ai is calculated as the relative Euclidean distance 

dp
 i =

�(Hp
i -Hi���)

2
+(Vp

i -Vi� )
2
+(Sp

i -Si�)
2

�Hp
i ×Hi���+Vp

i ×Vi�+Sp
i ×Si�

. (3) 

From our experiment, 0.15 is selected as the threshold. If 
dp

 i is less than this threshold, P is considered to be similar in 
color and added to Ai. Initially, the region Ai consists of Si 
only. By repeating the above process, the Si region continues 
to grow from inside to outside until no pixel has the Euclidean 
distance less than the threshold. 

Finally, each RGB seed generates a region corresponding 
to a triangle unit of its color [see Fig. 6(e)]. This strategy can 
constantly update the benchmark of Euclidean distance during 
the process and, therefore, have high adaptability and 
reliability. Besides, the “growing from the inside out” feature 
also ensures the structural accuracy of the extracted region. 

Triangle fitting. For the different RGB regions, we preserve 
the contours that belong to the RGB triangles according to the 
area, perimeter, and other conditions. We extract three corners 
from each sub-contour to form a topological triangle, i.e., a 
triangle connection relation stored as a point-set [see Fig. 6(f)].  

 
Fig. 5. Algorithm design of the multicolor CMP method, with the adaptive 
recognition algorithm (ARA) and spin-search algorithm (SSA) as the cores. 

 
Fig. 6. Marker recognition based on the adaptive growing algorithm (AGA). 
(a) Original image. (b) Target area extraction. (c) HSV color segmentation. 
(d) Seed selection. (e) Region growing. (f) Triangle fitting and connection. 



  

2)   Marker tracking 
Marker tracking is achieved by matching markers with the 

same serial number in different camera frames according to the 
connection relationship between adjacent tags. Based on the 
analysis in Section II, we propose the spin-search algorithm 
(SSA) to achieve rigid tracking based on the shape and the 
arrangement of the basic cells [see Fig. 7]. 

Adjacent triangle connection. As shown in Fig. 7(a), the 
connection of the red triangle at corner r0 is introduced as an 
example. Since each corner is at most adjacent to a green 
triangle and a blue triangle, it is practicable to find the corner 
points connected to r0 by simply searching within the green 
and blue triangles adjacent to the red triangle, respectively. Let 
the vector pointing from the corner r0 to g𝑖𝑖 denotes l gi

 r0����⃗ , and the 
corner points that need to be merged with r0 form the point-set 

S merge
 r0  = {g1, b1}, (4) 

and the remaining corner points form S other
 r0 . The minimum 

distance threshold Lr0 is preset. Under different deformations, 
Lr0 satisfies the function 

�
�l gi

 r0����⃗ �  ≤ Lr0,     gi ∈ S merge
 r0

�l gi
 r0����⃗ �  > Lr0,     gi ∈ S other

 r0
. (5) 

Therefore, it is possible to determine whether to perform the 
association operation on the corner r0 and corner g𝑖𝑖 by judging 
the distance relationship. The same procedure is performed for 
the blue and green triangles, except that the already connected 
corner points are ignored to reduce the computation time 
Finally, the average coordinate values of r0 , g1 , and g1  are 
taken as the coordinate values of the merged corner points. The 
above process constructs a topological connectivity graph of 
markers [see Fig. 6(f)], and effectively avoid the connection 
errors by the differentiation between the basic units. 

Search based on the spin-search algorithm. The spin-search 
algorithm requires the corner points to be traversed in the same 
direction (like clockwise). The following strategy implements 

SSA: When traversing the three corners of a triangle, each 
corner is searched clockwise according to its azimuth relative 
to the center point of the triangle; when traversing the three 
triangles around a corner, each triangle is searched clockwise 
according to the azimuth of its center point [see Fig. 7(b)]. 

For the previously mentioned white triangle, its bottom 
corner is used as the starting point of the traversal process. 
From that point, we traverse each marker from the inside out 
in a hierarchical manner [see Fig. 7(c)]. The traversal process 
is divided into two parts: 1) traversal within the same layer, 
and 2) traversal from the inner layer to the outer layer. For 
example, the path from b1  to c4  implemented by the SSA-
based traversal algorithm in Fig. 7(c) can be expressed as 
{ b1, b2, b3, b4, b5, b6, c1, c2, c3, c4 }. 

Repair strategy for omission cases. There are two main 
types of omission cases caused by interference: the loss of 
valid details at the edge of the pattern and the loss of valid 
information inside. For the first case, since the search order of 
SSA is inside-out, when the feature points on the outer side are 
lost, the affected outer layers can be discarded to ensure the 
feature points on the inner layers still achieve representation. 

For the latter case, if only one or two triangles are missing 
along with their corner points (mild omission), we supplement 
the position information of the lost markers using the triangles 
adjacent to them [see Fig. 7(d)]. Let the missing triangle be 
T k

 i+1 between Layer k-1 and Layer k, and the missing marker 
denotes pk

n+1. It is first necessary to find the triangle T k
  j and 

triangle T k
  j+1, which satisfy the function 

⎩
⎨

⎧
 

T k
 i  ∩ T k

 j  =  pk
n

T k
 i+2 ∩ T k

 j+1 =  pk
n

T k
 j  ∩ T k

 j+1 =  pk
n+1

. (6) 

Thus, the next corner of corner pk
m  in triangle Tk

 j  and the 
previous corner of corner pk

m+1 in triangle Tk
 j+1 are obtained. 

Besides, these two points are theoretically the same corner. 
Considering the error in the actual detection, the average of the 
two coordinates is taken to calculate the coordinate of pk

n+1. 
In addition, if the omission is heavy, the missing markers 

can be approximately repaired by using the geometric 
regularity of the arrangement. We divide the marker pattern 
into six areas [see Fig. 8(a)]. For the honeycomb and elliptical 
(round) CMP, the markers of the same layer in each area are 
arranged in a line and a circular arc. It means that we can use 
the quadratic fitting and equidistant interpolation to get the 
missing marker based on the same-layer ones [see Fig. 8(b)]. 

Since the marker pattern’ shape is changing, the repairing 
process has low confidence and will fail when all the markers 

 
Fig. 7. Marker tracking based on the spin-search algorithm (SSA). (a) 
Adjacent triangle connection. (b) The clockwise traversal strategy. (c) The 
implementation of SSA. (d) Repair strategy in case of small omission.  

 
Fig. 8. Repair strategy in case of heavy omission. (a), (b) Fitting based on the 
quadratic form. (c) Different paths from point 1 to point 2. 



  

of the same layer are lost. Besides, the basis of the above repair 
strategy is the rigid attribute of the multiple CMP. Since all the 
basic units are physically connected, we can always find other 
paths to bypass the damaged area and set the serial numbers of 
all the non-lost marker points. Fig. 8(c) shows the paths from 
point 1 to point 2. Thus, for a certain marker, we can always 
use the same-layer markers to repair it (unless the whole layer 
is missing), which already cope with the actual application. 
3)   Information supplement 

Our previous work [25] shows that virtual marker points 
can be obtained by discretizing ideal grid lines to supplement 
two-dimensional information. Since each set of virtual marker 
points is determined by the gridline between two adjacent 
measured marker points, the orderly numbering and rigid 
tracking of virtual marker points can be achieved using the 
already numbered measured markers. The supplement of 
virtual marker points can balance the algorithm’s efficiency 
and the comprehensiveness of the information representation. 

IV. EVALUATION EXPERIMENTS 

In this section, we developed two sensor prototypes with the 
multicolor CMP and the square CMP, respectively. We focus 
on the relative performance comparison of these two methods 
rather than the sensor as a whole. 

A. Experimental equipment and setup 
Based on the previous work [30], we designed the Tac3D 

3.0 sensor as the experimental prototype [see Fig. 9(a)]. Its 
body was made by 3D printing, and the soft elastomer, camera, 
LED light source, and lens were all fixed in the sensor housing. 
Tac3D 3.0 adopted the principle of virtual binocular vision as 
shown in Fig. 9(b). It could use only one camera to realize 
binocular stereo vision, so as to ensure binocular synchronous 
triggering in the experiment. 

Besides, we adopted a new preparation process for the soft 
elastomers, which were made multi-layer, including the base 
layer, the marker pattern layer, and the protective layer. The 
core of the new process is to carve holes on the cast elastomer 

using laser and fill them with colored silicone, ensuring that 
the colored pattern can has clear texture and can be deformed 
with the elastomer. We made two elastomers with the square 
CMP and the multicolor CMP, respectively [see Fig. 9(c)]. 
They are designed to be detachable and can be easily replaced 
in experiments. Since the main part of the sensor remained 
unchanged during the replacement process, we could focus on 
the effect of the patterns on measurement only and compare 
the performance of them through evaluation experiments. The 
edge length of each basic unit in the two modes is set equal to 
1.5mm to ensure the fairness of the comparison. 

All experiments were performed on the test platform shown 
in Fig. 9(d). Using a combined micro-motion platform, we 
could replace different shapes of test objects and control the 
contact (including three-axis force and one-axis torque) in 
different positions and orientations. Since our purpose is to 
compare the performance of the two CMP methods rather than 
the performance of the sensor as a whole, this article only used 
the raw deformation as the basis for the evaluation.  

Related algorithms were running on a laptop (i7-12700H 
processor at 2.30 GHz, 14 cores, and 16.0 GB of RAM) and 
implemented by C++ OpenCV. In real-time practice without 
optimization, the processing frequencies for the two methods 
achieved 20 Hz (the square CMP) and 16 Hz (the multicolor 
CMP). The main reason for the speed limit lay in the large 
amount of marker points (nearly 5000 points including virtual 
marker points). For the task of dense 3D displacement field 
reconstruction, such frame rate could meet the requirements. 

B. Precision Evaluation 
Precision is mainly expressed in the degree of conformity 

between the measured results and the actual values. We 
selected five different objects to contact the soft elastomers by 
squeezing them for 2mm in the normal direction [see Fig. 
10(a)]. The purpose of this experiment was to qualitatively 
compare the representation of two CMP methods for the same 
contact deformation. As shown in Fig. 10(b) and 10(c), the 3D 
morphologies and displacement fields were reconstructed by 
the two CMP patterns, respectively. When the contact surface 
was relatively smooth (e.g., using a ball or a ring), the 
deformation reconstructions of the two methods were not 
obviously different. However, when the contact surface was 

 
Fig. 9. Experimental equipment. (a) Tac3D 3.0 sensor. (b) Virtual binocular 
vision principle [30]. (c) The detachable soft elastomers with the square CMP 
and multicolor CMP and their images in the camera view. (d) Experimental 
platform for evaluations.  

 
Fig. 10. Comparison of reconstructed contact deformation. (a) Test objects. 
(b) The reconstruction of the square CMP. (c) The reconstruction of the 
multicolor CMP. Red arrows represent the displacement of marker points. (d) 
Comparison of sharp contact characteristics (amplification of the side view). 



  

sharp (e.g., using a rib or a wedged block), the multicolor CMP 
could avoid the sharp mutation and distortion caused by the 
concentrated distribution of low-response zones, and thus 
presenting clearer edges with high resolution. [see Fig. 10(d)]. 

We further defined the edge fitting error and response 
capability to judge the measurement refinement of both 
methods quantitatively. A cube with a side length of 15mm 
was chosen as the test object for contact with the soft elastomer. 
On the two elastomers, ten same positions were selected at 
equal intervals (4mm in x- or y-directions). We used the micro-
motion platforms for each position to control two contact 
modes: 1) Press to a depth of 1 mm (z-direction). 2) Press to a 
depth of 1 mm, then shear 1 mm tangential (y-direction). The 
markers in the contact area should have corresponding z- or y-
direction displacement. Considering the contact slip, we 
selected the markers that moved more than half of the 
maximum displacement to join an edge-point set. We further 
fitted the maximum circumscribed square of the point set, 
which was the contact edge that the marker pattern could 
represent. The closer the square’s side length obtained by 
fitting was to 15 mm, the more accurate the CMP was in 
characterizing the sharp characteristics under current contact. 
The error distribution under different conditions are shown in 
Fig. 11 (a). The results reveal that the multicolor CMP can 
obtain more accurate measurement and the edge fitting error is 
reduced by 61.2% and 58.1%, respectively. 

For shear contact, although the elasticity of the contact part 
could hinder the movement of markers in the horizontal 
direction, the markers closer to the contact edge still had 
greater displacement. Under the same setting as the above 
experiment, we added a group of contact modes: 3) Press to a 
depth of 1 mm, then shear 1mm tangential (x-direction). We 
obtained the edge-point set of the second and third contact 
modes and calculated the average displacement of the points 
in the corresponding shear direction, as shown in Fig. 11 (b). 

The response capacity is defined as the ratio of the average 
value to the shear amount (as 1mm). The multicolor CMP’s 
responsiveness in x- and y-directions has been improved by 
17.6% and 12.2%, respectively. It shows that the multicolor 
CMP has reduced the proportion of markers at the contact edge 
distributed to be in the low response area. 

The above experiments show that the multicolor CMP 
method has a higher precision in local and global than the 
square CMP method. On the one hand, the multicolor CMP 
has higher compactness under the same basic unit length (i.e., 
the spacing of markers) and avoids the concentrated 
distribution of low response areas, thus avoiding the loss of 
sharp contact characteristics. On the other hand, the multicolor 
CMP can solve the singular angle problem, thus improving the 
deformation reconstruction at the contact position. 

C. Reliability Evaluation 
In this subsection, different extreme loading conditions 

were selected to compare the reliability performance of the two 
methods. We put a test ball with a radius of 20mm in contact 
with the soft elastomers at ten groups of sampling positions, 
which were equally spaced. Three types of contact modes were 
applied on each sampling position: 1) Press to a depth of 2 mm, 
then twist 30 degrees clockwise. 2) Press to a depth of 2 mm, 
then shear 1.5 mm tangential (x-direction). 3) Press to a depth 
of 2 mm, then shear 1.5 mm tangential (y-direction). For these 
two different CMP methods, the test results were classified as 
“successful” and “failed”, and recorded separately as shown in 
Table Ⅰ]. 

The results show that the success rate of the multicolor CMP 
method is higher than that of the square CMP method. When 
the soft elastomer was deformed by forces, the basic units in 
the marker pattern would be squeezed or stretched. Fig. 12(a), 
(b) show a typical recognition result of the two methods under 
the same contact position and condition. While the square 
CMP could get stuck during contact and caused a loss of 
information in multiple contiguous units, the multicolor CMP 
was able to distinguish the basic units close to each other 
through color differences, thus avoiding these situations. 
Besides, Table Ⅰ also reveals the effect of the newly introduced 
repair strategies in the multicolor CMP. Since the missing 

 
Fig. 11. Comparison of the Edge fitting error and response capability 
comparison. (a) Edge fitting error. (b) Response capability. 

TABLE I.  RELIABILITY TEST RESULTS OF TWO CMP METHODS 

The CMP method 
Contact mode 1 Contact mode 2 Contact mode 3 

Successful Failed Successful Failed Successful Failed 

The square CMP 7 3 6 4 6 4 

The multicolor CMP 9 1 7 3 10 NA 

The multicolor CMP with 
repair strategies 10 NA 10 NA 10 NA 

 
 
 

 
Fig. 12. Comparison of original recognition results. (a) The recognition result 
of the square CMP. (b) The recognition result of the multicolor CMP. 



  

information was all limited to single basic units, the CMP with 
repair strategy still obtained acceptable results for all tests. 

In addition, note that the failure rates of the two CMP 
methods are relatively close for the second contact mode. The 
reason is that the x-direction shearing would make the markers 
in the contact area far away from one of the visual fields in the 
virtual binocular camera, thus improving the difficulty of 
recognition and tracking. Such results mean that in addition to 
the design of the pattern and algorithm, the optical system can 
also affect the measurement results. It inspires us to improve 
the contact representation and extraction by optimizing the 
imaging process in future work. 

The above experiments show that the multicolor CMP 
method results in higher reliability. Using the RGB basic units 
and the AGA method can improve recognition accuracy, and 
the SSA method can make reliable repair strategies possible. 
The algorithm used for the multicolor CMP can also be 
modified to adapt to the square CMP and is expected to 
improve its reliability in representation and extraction of 
contact information. 

V. CONCLUSION 
Representation and extraction of contact information play 

a decisive role in the quality of raw information for robotic 
tactile perception. This article proposes the multicolor CMP 
method for enhancing tactile sensing elements’ performance, 
especially reliability and precision. Our research starts from 
the optimization objectives of the CMP method and works on 
pattern design and algorithm design. Experimental results 
demonstrate that compared with the former square CMP 
method, the multicolor CMP method can achieve higher 
precision and reliability under the same hardware conditions. 

In future work, we will explore the possibility of combining 
marker pattern methods with other related methods. For 
example, we attempt to combine the CMP method with other 
methods of representation and extraction to achieve super-
resolution contact distribution force measurements. In 
addition, we are exploring the optimization of the preparation 
process of the sensor’s optical system and the marker layer of 
the soft base component, aiming to provide the quality of the 
original contact information. We also plan to explore how 
learning-based techniques can further exploit the potential of 
the multicolor CMP method. These efforts will help extend 
the proposed approach to practical applications. 
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