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Abstract—The vision-based tactile sensor has been proven 

to be a promising device for sensing tactile information. Among 
such sensors, the marker displacement method (MDM) is the 
most common method used in such sensors for representing 
and extracting contact information. It uses the position field and 
displacement field of a marker array to characterize the original 
tactile information, and further achieves multimodal tactile 
perception through original information processing. This article 
is the first to classify MDM into three typical categories based 
on the dimensionality perspective: 2D MDM, 2.5D MDM, and 3D 
MDM. A comparison study is presented with a focus on the 
principles, characteristics, applications, and distinctions of 
these three methods. The latest literature has also been 
researched as the arguments. Finally, a summary of these three 
categories is presented as a helpful reference. 
 

Index Terms—Vision-based tactile sensors, marker displacement method, dimensionality, multimodal tactile information. 
 

 
I. INTRODUCTION 

OBOTICISTS are working to develop robots with the ability 
to perform in unstructured, complex, and changing 

environments [1], [2]. To achieve greater flexibility and 
robustness, a robot must be able to perceive, recognize, and 
understand the environment. Although the success of computer 
vision has led to significant improvements in robot perception 
on unstructured natural conditions [3], [4], the robot perception 
capability in direct contact with the environment still needs to 
be improved. Robotic vision could not provide sufficient 
perceptual information when the visual perception is impaired 
or the scale of interaction is too small. In such cases, we need 
to find another means of robot sensing as a complementary.   

Inspired by the physiology of human touch, robotic tactile 
perception has garnered much research attention [5]. Tactile 
information has been confirmed to complement visual 
information and play a significant role in robotic perception and 
manipulation tasks [6], [7]. Over recent years, many different 
types of tactile sensors have been developed, and some of them 
have been successfully used in multi-sensory feedback systems 
for robots, and are constantly expanding their application 
scenarios [8]-[11]. Among them, vision-based tactile sensors 
(also called visuotactile sensors) have emerged as a promising 
solution for robotic contact perception [12]-[16]. They belong 
to the camera-based type of optical tactile sensors [17]. Unlike 
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flexible tactile sensing arrays, such sensors use a soft elastomer 
as the contact medium, and obtain tactile information from the 
contact surface through image acquisition devices and post-
processing algorithms. They have drawn interest due to their 
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Fig. 1.  Principle of marker displacement method (MDM) in vision-based 
tactile sensors [17], [19], [22]-[28]. The soft elastomer with a maker 
pattern serves as the contact part with external objects. Markers in the 
pattern move when the elastomer deforms, and the movement of them 
can be captured by cameras through the designed optical system. 
Further processing of the displacement information allows for 
multimodal tactile reconstruction. 
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simple structure, easy preparation, and the ability to obtain rich 
tactile information through high-resolution visual images. 

Vision-based tactile sensors are valued for their capability of 
sensing multimodal tactile information. By constructing the 
mechanical model of the soft elastomer and designing the 
corresponding post-processing algorithm, it is viable to achieve 
the multiple tactile sensory, e.g., surface shape recognition [18], 
force-field measurement [19], contact region estimation [20], 
and slippage detection [21]. Noteworthily, in current studies, 
the reconstruction and recognition are commonly achieved by 
the mapping relationship from the deformation information to 
each contact modal [12], [16]. Therefore, the deformation of the 
contact surface is typically regarded as the original tactile 
information that can be used to reconstruct other contact 
features. 

Several approaches have been put forward to visualize the 
contact deformation, chief amongst these being the marker 
displacement method (MDM), as shown in Fig. 1. MDM uses 
the displacement of some markers, placed on the surface or 
inside of the soft elastomer, to reflect the deformation [12]. 
When the soft elastomer is deformed by external contact, the 
markers will move accordingly. The movement of these 
markers can be captured by cameras and processed by 
subsequent algorithms. In particular, the vision-based tactile 
sensors based on MDM have the potential to enable analytical 
modeling of all kinds of contact mechanic characteristics, 
provided that suitable algorithms can be designed. Currently, 
researchers have developed a number of vision-based tactile 
sensors, representative of which include FingerVision [22], 
GelSlim [19], GelSight [24], GelStereo [25], GelForce [27], 
and TacTip [17]. These sensors all adopt MDM mainly or 
partially as the approach of contact information representation 
and extraction. 

The in-depth understanding of MDM will help researchers to 
use it in visual tactile sensors. However, it is noteworthy that 
the existing researches do not strictly distinguish between the 
different types of such methods. Researchers generally agree 
that since the solution of contact information is a hyper-static 
problem, and it is always possible to uniquely determine 
different types of contact properties as long as enough low-
dimensional original information is available. However, 
revisiting MDM from the level of dimensionality, it is not hard 
to find the mechanistic differences in existing approaches. The 
complete original tactile information is a 3D field. For MDM, 
the real-3D measurement can be achieved only when the 3D 
information of each marker can be confirmed completely and 
reliably. However, since different application scenarios have 
different requirements for tactile perception, the corresponding 
MDM shows different properties and performance. Without 
differentiation, there might be a lack of systematic and 
comprehensive guidance in analyzing and optimizing the 
characteristics of MDM and selecting the most suitable method. 

According to relative works, we divide the existing MDMs 
into three categories according to the dimensionality of the 
deformation information (the details are introduced in Section 
II, III, and IV, respectively): 

2D MDM. A single camera can acquire 2D tactile images as 
the raw material of information extraction. Since the contact in 
the tangent plane and normal direction both can affect the 2D 
displacement of the markers in the camera’s view, it is possible 

to extract tactile information of three dimensions only from 2D 
tactile images. This method requires extracting the 2D positions 
of the marker array and using information fusion approach to 
obtain 2D or 3D contact characteristics. 

2.5D MDM. Since the style and layout of the markers can be 
changed, other indirect features different from coordinates can 
be used to represent depth information (e.g., the marker size and 
shape on the image plane). Thus, by extracting both the 2D 
displacement field and such features from the tactile images, 
pseudo-3D (2.5D) deformation can be measured to achieve 2D 
or 3D tactile perception. 

3D MDM. Binocular or multi-eye imaging can be convenient 
to achieve 3D tactile image acquisition through stereo vision, 
and therefore enables the reconstruction of fine 3D contact 
information. It can be achieved by adding cameras or designing 
the optical system. This method can ensure the accurate 3D 
coordinate value of each sampling point. 

This article re-categorizes the existing MDMs as the 2D 
MDM, 2.5D MDM, and 3D MDM, respectively, and presents a 
comparison study on these three different types of MDM. Our 
discussion focuses on the marker displacement method, and 
therefore does not include other methods commonly used in 
visuotactile sensing systems (e.g., the photometric stereo-based 
reflective membrane method [29]). For sensors that use 
multiple sensing principles at the same time (e.g., GelSight [24] 
and GelSlim [30]), we only discuss the part of them that is 
related to MDM. The main contributions of this article include: 
1) For the first time, we adopt a new analysis based on the 

dimensionality and classify the existing MDM into 2D 
MDM, 2.5D MDM, and 3D MDM. Based on the latest 
literature, we review the principles, characteristics, and 
applications of the three methods in detail. The analysis in 
this article focuses on the underlying mechanisms and their 
differences of these approaches, and the characteristics that 
result from such distinctions.  

2) We summarize in a comparative manner the basic features, 
advantages, and disadvantages of the three methods and the 
scenarios to which each is applicable. Compared with the 
previous reviews, we mainly focus on the differences in the 
essence of the method, rather than the specific sensor 
design. This work can provide a valuable reference for 
researchers who are interested in applying MDM in fields 
such as vision-based tactile sensors. 

II. 2D MARKER DISPLACEMENT METHOD (2D MDM) 
The main feature of the 2D marker displacement method is 

the single-camera measurement. It obtains tactile information 
directly from a single-camera image, as shown in Fig. 2(a). 
When the soft elastomer with a marker pattern is deformed by 
external loads, the movement of markers with the deformation 
can be photographed with a single camera (preferably an 
orthographic projection). Thus, the 2D coordinate information 
of each marker can be recorded in the camera’s image 
coordinate system. 

Usually, the obtained 2D coordinate information is 
considered a coupled whole for post-processing. By means of 
single camera measurement, it is impossible to directly obtain 
the complete three coordinate values of each sampling point. 
Therefore, compared with considering the specific value of 
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each marker, researches prefer to conduct overall operation on 
the tactile image in the form of fields and build the mapping 
relationship from 2D displacement (or coordinate) field to other 
tactile features. 

From the perspective of dimensionality, the single-camera 
measurement method relies only on the 2D displacement 
information of the marker array in the camera image space, i.e., 
the 2D deformation information. Therefore, we refer to this 
method as the 2D marker displacement method (2D MDM). 

A. Principles of 2D MDM 
Taking the physical model shown in Fig. 2(b) as an example, 

we summarize the basic principles of 2D MDM from related 
work to realize tactile retrographic sensing. Let the 3D position 
of a marker point Pi

k  in the sensor coordinate system be 
Pi

k�xi
k, yi

k, zi
k� , and the 2D position in the image coordinate 

system be pi
k�ui

k, vi
k�, at the k-th camera frame. The external 

reference matrix of the camera is He and the internal reference 
matrix is Hi. According to the well-known camera model, the 
relationship between the image coordinates  pi

k�ui
k, vi

k� and the 
spatial coordinates Pi

k�xi
k, yi

k, zi
k� can be expressed, in the form 

of homogeneous coordinates, as 
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where s is a scaling factor. If the camera aberration is ignored, 
s is numerically equal to the vertical distance from the point 𝑃𝑃𝑖𝑖𝑘𝑘 
to the center of the camera, which can be expressed as 
 

  s = f (xi
k, yi

k, zi
k). (2) 
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Eqs. (1) denotes a relational equation between the 3D spatial 
coordinates and the 2D image coordinates. However, this 
relationship is not a one-to-one mapping. In other words, 
solving the position information with three unknown quantities 
is an indefinite solution problem. As long as independent 
equations equal to or redundant with the number of unknown 
variables can be obtained, i.e., the number of makers is at least 
3n/2, it is still possible to achieve inverse recovery of 3D tactile 
information from n discrete points with 2D displacement 
information. Therefore, 2N sets of 3D coordinates ��x1

k , y1
k , 𝑧𝑧1

k�, 
�x2

k , y2
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k ��  of 3N marker 
points. The mapping equations are determined to be 
 

⎣
⎢
⎢
⎢
⎡ �u1

k , v1
k�T

�u2
k , v2

k�T

...
�u3N

k , v3N
k �T

⎦
⎥
⎥
⎥
⎤

1×6N

 = HX→U ∙ 

⎣
⎢
⎢
⎢
⎡ �x1

k , y1
k , z1

k�T

�x2
k , y2

k , z2
k�T

...
�x2N

k , y2N
k , z2N

k �T
⎦
⎥
⎥
⎥
⎤

1×6N

, (4) 

 

       

⎣
⎢
⎢
⎢
⎡ �x1

k , y1
k , z1

k�T

�x2
k , y2

k , z2
k�T

...
�x2N

k , y2N
k , z2N

k �T
⎦
⎥
⎥
⎥
⎤

1×6N

 = HX→U
−1 ∙ 

⎣
⎢
⎢
⎢
⎡ �u1

k , v1
k�T

�u2
k , v2

k�T

...
�u3N

k , v3N
k �T

⎦
⎥
⎥
⎥
⎤

1×6N

 (5) 

 

if a proper matrix 𝑯𝑯𝑿𝑿→𝑼𝑼 is chosen, and the relationship between 
the 2D displacement and the 3D displacement satisfies 
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The 2N sets of 3D coordinates obtained do not necessarily 
belong to the real marker points. We can refer to them as 
“virtual” marker points. It means that by using the 2D 
coordinates of 3N real marker points, we can obtain the 3D 
coordinates of 2N virtual marker points. Although these marker 
points are not real, they constitute a displacement field that can 
reflect the contact deformation, thus allowing the sensor to 
obtain pseudo-3D contact information. HX→U and H∆X→∆U are 
invertible matrices reflecting the relationship between 2D and 
3D information, which are determined by the selected positions 
of virtual marker points, and the internal and external 
parameters of the camera. Moreover, when the ratio between 
the number of 2D coordinates obtained and the number of 3D 
coordinates required exceeds a critical value, the problem is 
transformed into a super stationary one. In this case,  HX→U can 
be calculated using least squares [31]. 

The above discussion shows that it is theoretically possible 
to reconstruct 3D contact characteristics by obtaining redundant 
2D coordinate information (this does not mean that the mapping 
relationship must be constructed through a matrix). Since such 
3D information obtained by 2D MDM is indirectly confirmed, 

 
Fig. 2. 2D marker displacement method (2D MDM). (a) The principle of 
single-camera measurement. (b) The camera model based on pinhole 
imaging, ignoring image aberration. (c) Using redundant 2D information 
of real markers to fitting 2D or 3D information of virtual markers. 
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we can call it pseudo-3D information. Besides, in many cases, 
the acquisition of 2D contact properties alone is sufficient (e.g., 
slip and rotation measurement [32], [33]). For this class of 
problems, the dimensionality of the original tactile information 
can be reduced, and only 2D position and displacement fields 
obtained directly are required to be extracted. The idea of 
reconstructing 2D contact properties based on 2D coordinate 
information is similar to the above 3D approach. 

B. Technologies and Implementation 
Section II-A introduced the basis of acquiring 2D or pseudo-

3D tactile properties using 2D displacement information (or 
position information) in 2D MDM. In addition, two technical 
problems need to be solved to implement this method in sensors.  
1) Obtain the 2D deformation information of markers. 

Section I states that the original tactile information of vision-
based tactile sensors is deformation. In 2D MDM, there are two 
frequently-used approaches to extract the deformation: obtain 
each marker’s displacement (or coordinate) through recognition 
and tracking, or directly use the 2D tactile image as the input 
for end-to-end learning. 

a) Marker recognition and tracking 
In a real sensor, the markers are a series of objects with a 

certain size [16]. The GelSight sensor used ink dots as markers 
[24], the GelForce sensor embedded markers of two colors (red 
and blue) [27], and the TacTip sensor used pin-shaped markers 
distributed on the inner wall [34]. Existing studies regard the 
geometric center of these markers as the targets of position and 
displacement measurement. Therefore, the commonly used 
method is to extract the area covered by the marker’s image 
using algorithms such as blob detection, and to calculate the 2D 
position of blob’s gravity center [18], [24], as shown in Fig. 3(a). 
Liu et al. proposed a learning-based marker localization 
network called Marknet, which improved the precision 
compared with the traditional detection method [35]. 

Besides, the markers identified are unorganized point sets, 
and the displacement of these points needs to be obtained by 
tracking the same marker points in consecutive frame images. 
Currently, three types of tracking methods are mainly used. 

Type 1: An easy-to-implement approach is to search near a 
marker point of the previous frame to find the marker point with 

the closest distance to it in the current frame [18], [27], as 
shown in Fig. 3(b). The above approach is based on the fact that 
the marker position changes very little in the adjacent frame 
images. When the distance between two points is less than a 
threshold value, these two points can be considered identical, 
and a matching relationship can be established to achieve 
marker tracking. 

Type 2: Related studies have also achieved non-rigid and 
rigid matching for active tracking by an orderly organization of 
the markers. Ito et al. used the regularity of marker array in 
spatial layout to assign an identification number to each marker 
[20]. Therefore, each point could be tracked even if the markers 
moved quickly or the displacements of them were large. Choi 
et al. used the virtual marker method to integrate 2D point cloud 
information, thus estimating 3D contact locations [36]. 
However, since the arrangement of the marker array can also be 
affected by the deformation, such methods may also fail under 
heavy load. Different from them, Li et al. proposed the 
continuous marker pattern (CMP) to build physical association 
in the texture space between each measured marker points [26]. 
Compared with discrete marker patterns, the CMP method can 
support rigid point-set registration, but it may also increase the 
difficulty of marker recognition. 

Type 3: The array of markers can be replaced with a higher 
density of scattered spots, which makes it suitable for effective 
methods such as optical flow and dense inverse search [28], 
[37]. Du et al. used a random color pattern to characterize the 
deformation and estimated depth information based on the 
dense optical flow method and Gaussian density feature 
extraction [37]. Wang et al. used particle image velocimetry 
(PIV) to process tactile images with semi-markers [38]. The 
Viko sensor used random pixel markers and the dense optical 
flow method to obtain contact areas and shear forces [39], [40]. 
The use of random color patterns and corresponding algorithms 
can be applied to other scenes with perception requirements, 
such as the robot leg system [41] and the micro lens array (MLA) 
based electronic skin [42]. 

b) End-to-end prediction of tactile images 
Since the marker points are in dynamic motion during contact, 

the marker recognition and tracking process is often affected by 
many factors, e.g., markers could be lost if they move out of the 
frame of the camera image or overlap with each other under 
great distortion; the interference of external light leakage and 
internal lighting reflection could affect the reliability of the 
tracking and recognition process, etc. This issue remains a 
common problem in the vision-based sensors community. 

A feasible idea is to directly predict deformation information 
from tactile images in an end-to-end manner. The CNN method 
is a typical example [43]. It does not need explicit processing 
steps to detect and track markers, but directly uses tactile 
images with feature information as the training data. There are 
differences in the information present and feature selection, e.g., 
GelSight can have both marker and depth information on the 
same tactile image, while the tactile images of TacTip only have 
markers. By designing the appropriate network architectures, 
end-to-end prediction methods are able to obtain 2D and 3D 
deformation information directly and even other types of tactile 
properties. 

Compared with marker recognition and tracking, the 
learning-based approaches are valued for their robustness. 

 
Fig. 3. Recognition, tracking, and matching of markers in MDM. (a) 
Marker recognition. (b) Marker tracking. (c) Marker matching. 
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When the markers are lost or moved out of the image frame, 
using the standard marker recognition and tracking method may 
be challenging, while the end-to-end prediction method, like 
CNN, can still give acceptable results. However, their major 
limitation is the requirement of numerous training data, which 
may increase the sensor’s manufacturing cycle and reduce the 
algorithm’s generality. 

Since the above two methods are usually combined in 
existing sensors to meet different requirements, we will not 
strictly distinguish them in the following introduction. 
2) Build the mappings between 2D deformation and 3D contact 
characteristics. 

In the discussion of Section II-A, the process of mapping 
from 2D coordinate information to 3D coordinate information 
is expressed in the form of matrices. In practical applications, 
the mapping results can be replaced with other types of contact 
characteristics (e.g., distributed force), and the mapping 
relationship HX→U  does not need to be linear or explicit. A 
tactile sensor can have corresponding sensory functions by 
constructing a mapping relationship from a 2D displacement 
field (or 2D tactile image) to specific 3D tactile information 
similar to equation (5) or (6). Such tasks are usually achieved 
through model-based analytical approaches (e.g., by 
constructing finite element models of deformation [44], [45]), 
and are also suited to be combined with machine learning 
techniques [17], [24], [46]. 

GelSight and TacTip are the most concerned embodiments 
applied (or partially applied) to 2D MDM. The GelSight 
sensors mainly use reflective surfaces and the photometric 
stereo method to contact geometry and can also print markers 
to measure the force and moment  [24]. For GelSight versions 
with markers, multi-layer neural networks were used to process 
the marker array for obtaining the relationship between 2D 
displacements and 3D forces [47], [48]. In this process, the 
deformation reflected by the markers was converted into force 
and slip information through 2D MDM [49], which was then 
processed into the visuotactile learning models as part of the 
input. In addition, model-based approaches were also used to 
handle perception tasks under dynamic contact. Kolamuri et al. 
proposed a rotation measurement algorithm to detect rotational 
patterns and displacement, which helped to promote grasp 
stability [33]. Huang et al. proposed a physics-inspired model 
to deal with the problem of liquid oscillation [50]. Experiments 
showed that this model could estimate liquid properties under 
dynamic contact with high precision. 

The TacTip sensors adopted biomimetic design by emulating 
the human fingertip’s internal structure [34]. The soft elastomer 
of TacTip was embedded with nodular pins (mimicking the 
dermal papillae and intermediate ridge structure of the dermal-
epidermal boundary), and the contact information perception 
could be realized through 2D MDM processing of pin images. 
In the existing research, a series of probabilistic classifiers, 
training models, and control strategies were used to achieve 3D 
real-time tactile interaction [17]. For example, Lepora et al. 
used the SVM classifier [51], the Gaussian process regression 
(GPR) model [52], and convolutional neural networks (CNN) 
[53] to complete different tactile perception tasks. Such 
technology was further integrated into the Shadow Modular 
Grasper, where tactile features were extracted from high-
dimensional original images through multivariable linear 

models [54]. Besides, some new designs have been developed 
based on the standard TacTip. For example, the miniaturized 
TacTip was integrated into the Pisa/IIT SoftHand, and could 
use the structural similarity index measure (SSIM) and the CNN 
to obtain contact feedback, therefore achieving the closed-loop 
control of robot hand [55]. TactTip-SoftH shows that vision-
based tactile sensors can reach a size as the human fingertip. 
The T-MO robotic hand used the similar design of TacTip to 
develop underactuated fingers with tactile perception and used 
support vector machines to realize slip detection and other 
functions [56], [57]. 

In other relevant studies, the construction of such mappings 
is commonly realized through modeling and learning. The 
GelForce sensor calculated the planar displacements by matrix 
relations, thus compensating for the lost dimension [27]. Fang 
et al. used BP neural network to obtain the displacements of 
marker arrays for calculating 3D force vectors [58]. Zhang et al. 
developed the FingerVision sensor (different from the 
FingerVision sensor proposed by Yamaguchi et al. [22]) and 
used convolutional LSTM networks to achieve slip detection 
[59]. Besides, they used the Helmholtz-Hodge decomposition 
algorithm to solve the pattern of marker displacement, thus 
enabling the detection of contact force and slip [60]. Zhang et 
al. proposed a shape detection and correction algorithm based 
on k-Nearest Neighbor (KNN) algorithm used in FingerVision, 
which can guarantee almost 100% recognition accuracy under 
given experimental conditions [61]. Sferrazza et al. used 
markers randomly distributed in different depth layers to 
reconstruct the force distribution information through optical 
flow, finite element, and deep learning methods [62], [63]. The 
DelTact sensor proposed a 3D contact reconstruction method 
using 2D tactile images by convex optimization modeling of 
contact geometry and projection relationship [64]. In addition, 
technologies in other fields are also being migrated into the 
field of visuotactile sensing (e.g., neuromorphic vision-based 
sensing [65], [66]). We believe such attempts will provide new 
ideas for constructing perception mapping and further expand 
the applicable scenarios of 2D MDM. 

C. Related Applications 
Based on the above discussion, 2D MDM can derive the 

deformation information from 2D displacement fields of real 
markers for a variety of modalities, including contact spatial 
surface [18], force distribution [63], slip field measurement [32], 
rotation measurement [33], geometric features detection [53], 
and dynamic tactile sensing [50], among others. Using these 
obtained contact characteristics, visuotactile sensors can 
provide tactile information of different dimensions and focuses 
for tasks, including robot grasping, operation, and active 
measurement [15]. Since 2D MDM widely adopts data-driven 
approaches, such processes can be implemented in two steps: 
First, tactile features and benchmarks are extracted from 2D 
tactile images through learning or modeling methods. Then, 
these related results are used as input for control of tasks such 
as grasping and operation. 

In the existing research, Sun et al. designed a control strategy 
to change the sensors’ perception characteristics to deal with 
different stages of the operation process [67]. They applied this 
strategy to skewering deformable food using the GelSight and 
FingerVision sensors. Wang et al. proposed a SwingBot robot 
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integrated with GelSight [68]. They extracted physical features 
from tactile information through end-to-end self-monitoring 
learning, thus completing accurate swing-up animation. Wilson 
et al. designed a two-finger robot gripper [69]. The gripper was 
equipped with multiple Gelsight sensors, and could realize 
grasping and in-hand operation through the use of shell and 
tensile stress. She et al. input the cable pose, contact area, and 
force estimation information obtained by GelSight into a pose 
controller and a grasping controller, thus realizing the task of 
following a dangling cable [70]. Lepora et al. proposed a novel 
pose-based robot servo and pushing method using TacTip [53], 
[71]. They used CNN methods to predict the 3D pose of the 
object’s edge or surface relative to the tactile sensor. The key 
aspect of the control system was to make the expected pose 
insensitive to the shear deformation of the sensor. Besides, the 
tactile features acquired by sensors based on 2D MDM were 
also directly used in tasks like object characteristics 
measurement [72], [73]. 

D. Discussion 
Due to the reduced requirements for optical systems and 

marker patterns, 2D MDM is relatively simple, stable, and 
highly flexible. For applications where only 2D tactile 
information needs to be utilized, 2D MDM can be performed at 
a high speed and with low hardware expense. In tasks such as 
shape detection, the array of markers can be replaced with a 
higher density of scattered spots to satisfy effective methods 
such as dense inverse search [28], [37]. Moreover, by choosing 
the appropriate machine learning techniques (e.g., CNN), 2D 
MDM methods can perform well under specific operating 
conditions. In such cases, the measurement effectiveness 
depends mainly on the selection of features, the quality of the 
raw data, and the design of the learning framework. 

However, since the depth information of each marker cannot 
be directly obtained, the quality of the measurement results 
depends heavily on the algorithms and the models. The post-
processing process cannot fully compensate for the missing 
dimensionality of the original information, which could lead to 
significant errors between the measured and true values in some 
cases. In other words, it takes work to guarantee the accuracy 
of 2D MDM in terms of details. From this point of view, 2D 
MDM methods tend to be more suitable for measuring overall 
contact properties (e.g., concentrated forces and moments [67], 
[74]). In addition, different mapping models need to be trained 
to reconstruct the tactile information for each modality, such as 
morphology, slip, and contact force distribution. It could also 
cause high sensor overhead and low generality, and the 
interpretability and generalization performance need to be 
improved [15]. 

III. 2.5D MARKER DISPLACEMENT METHOD (2.5D MDM) 
In 2D MDM, markers reflect the deformation information of 

single-point sampling. The usual processing is to extract the 
geometric center (i.e., the marker point) of each marker’s image 
in the camera planes, and calculate the position and 
displacement of markers for subsequent use (as introduced in 
Section II-B). 

2.5D MDM is likewise a type of MDM that uses a monocular 
camera, but adopts information supplements on this basis. This 

method uses some selected features to indirectly represent the 
depth information while acquiring the 2D position information 
of the markers, as shown in Fig. 4(a). In other words, the 2D 
displacement field is used to reflect the horizontal information 
of the markers in the sensor coordinate system, and the depth 
information obtained from the indirect measurement is used to 
reflect the vertical information. The camera converts these two 
parts of information into a tactile image at the same time during 
the shooting process. This way, the information supplement 
method can indirectly realize the 3D information measurement 
of discrete sampling points. 

From the perspective of dimensionality, the information 
supplement method relies not only on the 2D displacement 
information of the markers but also on the features that 
represent the depth information. Such feature quantities can 
indirectly characterize the z-direction position and 
displacement but have a certain degree of information loss and 
distortion. It means that this method can only reflect the third 
dimension of the deformation information to a certain extent. 
Therefore, we refer to this method as the 2.5D marker 
displacement method (2.5D MDM). 

A. Selection of Indirect Features 
The core of the information supplementation method is to 

select and implement depth information representation. Based 
on the characteristics of the visuotactile sensor, the selected 
feature quantity preferably has the following properties: 
1) The feature can be associated with each marker. In order to 

obtain full 3D field information, all markers should provide 
a specific feature bound to themselves. In other words, this 
feature quantity should be an endowed property of each 
marker, such as its shape, size, and color. 

2) The relationship between the change in feature quantity 
and the longitudinal displacement is uniquely determined. 
Each marker’s feature quantity can change with the elastic 
deformation of the material when the external load acts on 
the soft base component. Generally, a unique and stable 
analysis model is necessary for characterizing the depth 
information (e.g., the marker’s image size changes 
approximately linearly with the indentation, and the marker 
eccentricity changes with the sine of the surface angle). 
More complex nonlinear models can be constructed using 
data-driven approaches (such as CNN). 

3) The information characterization of this feature can be 
effectively implemented through the preparation process 
and algorithm design. Since the tactile perception task 
mainly occurs in small-scale contact scenarios, the markers 
are usually small and densely lined up. Therefore, the 
selection of features needs to consider the feasibility of 
process preparation and the difficulty of recognition. 

The existing researches [75]-[82] mainly use the size change 
of each marker’s image in the camera plane as the indirect 
feature (the details are introduced in Section III-C). When the 
sensor’s soft elastomer is deformed under contact, the markers 
will move accordingly. Take the marker p as an example: For 
the loads acting in the horizontal direction (such as tangential 
force and torque), the main displacement direction of marker p 
is parallel to the camera plane, and thus the marker’s imaging 
dimension changes is not distinct. For the normal force, the 
marker p moves towards the camera and may increase in size 
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due to elastic stretching (from d1 to d2), causing the marker’s 
imaging dimension on the image plane largen (from 𝑥𝑥1 to 𝑥𝑥2). 
Another typical feature is the change in the marker shape. For 
circular marker points, when extrusion or shearing occurs, the 
image of a marker on the camera plane will tilt into an ellipse. 
Therefore, the change of shape eccentricity can provide 
information about skin angle, namely the spatial gradient of the 
indentation field. 

The above discussion shows that the size or shape variation 
of markers on the image are suitable features for reflecting the 
deformation information in the z-direction. Since there are few 
representative works using other indirect features in the field of 
visuotactile sensing, we will mainly introduce the method based 
on the geometric changes of marker image in the subsequent 
introduction (other methods are shown in Section III-D). 

B. Principles of 2.5D MDM 
Unlike 2D MDM, 2.5D MDM depends on indirect features 

related to the logo. Therefore, the type of marker determines the 
information available from the marker displacement. According 
to the attachment between the markers and the soft elastomer, 
we divide the existing markers into three categories: 
1) The marker spheres that are embedded in the soft elastomer 

(e.g., GelForce [27]). Such markers are indirectly 
connected to the skin, and their deform are usually ignored. 
We can denote them as rigid markers. 

2) The marker dots are prepared by printing or etching (e.g., 
GelSight [24]). Such markers can move and deform with 
the squeezing and shearing of the skin, and we can call 
them deformable markers. 

3) The markers that are attached by stiff pins to the sensor’s 
soft skin (e.g., TacTip [34]) can be referred to as pin-
attached markers. 

For the rigid markers and the deformable markers, the 
geometric change of each marker’s image is used in 2.5D MDM, 
as shown in Fig. 4(b). An ideal camera with the focal length f is 
placed directly below the marker layer. The marker p is at a 
horizontal distance r and a normal distance h from the main 
optical axis of the lens. A load FN acting along the vertical 
direction on the contact surface causes a deformation of the soft 
elastomer and results in a small-scale displacement of p along 
the normal direction by ∆h. We assume that the displacement 
of the marker p in the horizontal direction is 0. Let the effective 
dimensions of p be d1 and d2 before and after the deformation 
occurs, respectively. According to the pinhole imaging model, 
 

�
x1 = f ∙ 

d1

h

x2 = f ∙ 
d2

h − ∆h

 (7) 

 

where 𝑥𝑥1  and 𝑥𝑥2  denote the imaging dimension of p in the 
camera plane before and after the deformation, respectively. 
We define the relative change rate of imaging dimension as 𝛼𝛼, 
and therefore 
 

α = 
x2 − x1

x1
 = 

d2

d1
∙

h
h − ∆h

− 1. (8) 
 

To derive the relationship between d1 and d2, we consider the 
difference of marker attributes. 

Type 1: The case of rigid markers, as shown in Fig. 4(c). Let 
the diameter of the marker sphere p be d, and the manifestation 
dimension of p before and after the deformation can be 
calculated as 
 

 �d1 = d ∙ (cos(θ1+∆θ1) + cos(θ1 − ∆θ1))
d2 = d ∙ (cos(θ2+∆θ2) + cos(θ2 − ∆θ2)) , (9) 

 

where 
 

�
θ1 = tan−1 r

h
  and  ∆θ1 = sin−1 d

2�r2 + h2

θ2 = tan−1 r
h−∆h

  and  ∆θ1 = sin−1 d

2�r2 + (h−∆h)2

. (10) 

 

Assume that the marker size is small enough relative to the 
distance of the markers from the camera (i.e., d ≪ h and r). d1 
and d2 can be expressed as 
 

d1 = 
d ∙ h ∙ �r2 + h2� ∙�r2 + h2− (d/2)2

h2 ∙ �r2 + h2− (d/2)2� − r2∙(d/2)2  = d ∙
�r2 + h2

h
 + O(d2), 

   d2 = d ∙ �r2 + (h−∆h)2

h − ∆h
 + O(d2), 

(11) 

 

Since the contact deformation is a small amount (i.e., 
∆h ≪ h and r), the relative change rate can be calculated by 
substituting (11) into (8) as 
 

α  =  h ∙ (r2 + h2) + r2 ∙ ∆h
(h − ∆h) ∙ (r2 + h2)

− 1 = 2r2 + h2

r2 + h2  ∙ ∆h + O(∆h2). (12) 
 

Type 2: The case of deformable markers, as shown in Fig. 
4(d). Let the diameter of the marker dot p be d. Initially, the 
dimensions of p are the original value. As the load is applied, 

 
Fig. 4. 2.5D marker displacement method (2.5D MDM). (a) The principle 
of information supplement. (b) Deep information characterization based 
on size and shape variation of the marker images. (c) The case of rigid 
markers. The size variation of the marker images depends on the normal 
distance. (d) The case of deformable markers. The size variation of the 
marker images depends on the elastic stretching. (e) The case of pin-
attached markers. The pins have a levering effect that can amplify 
indentation into shear [17]. 
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the elastic stretching causes an increment in the marker’s actual 
size during the movement. We can use a uniaxial compression 
model to represent the deformation of the marker p [75]. The 
ratio of transverse strain to longitudinal strain is determined by 
the Poisson’s ratio under the assumption of online elasticity, 
and thus 
 

d2/d1 = 1 +  ν 
 t 

 ∙ ∆h + O(∆h2). (13) 
 

where ν  denotes Poisson’s ratio and t denotes the effective 
thickness of the soft elastomer. Therefore, the relative change 
rate can be calculated by substituting (13) into (8) as 
 

 α  = h ∙ (t + ν ∙ ∆h)
t ∙ (h − ∆h)

− 1 = hν + t
th

 ∙ ∆h + O(∆h2). (14) 
 

Combining (12) and (14), the displacement of the marker p in 
the vertical direction and the rate change of dimensions 
approximately satisfy a linear relationship (A is a scaling factor): 
 

α = A ∙ ∆h. (15) 
 

Eqs. (15) is the basis of the 2.5D MDM based on the image-
size change. It states that the change amount in the distance 
between the marker and the camera is approximately 
proportional to the change amount in the area covered by the 
marker in the camera image space. Therefore, at each camera 
frame k, we can obtain the 3D displacement of marker i by 
tracking its 2D movement �∆u𝑖𝑖k, ∆v𝑖𝑖k� in the camera image and 
the rate of change of its geometry αi

k, according to the function 
 

�
∆xi

k

∆yi
k

∆zi
k

�= �
 f /zi

k

 f /zi
k

A−1

� * �
∆u𝑖𝑖k

∆v𝑖𝑖k

αi
k
�, (16) 

 

where f expresses the camera’s focal length. Thus, the 3D 
position field can be calculated by adding the obtained position 
changes with the initial coordinates of each marker pre-
calibrated. 

Besides, for the pin-attached markers, the geometric changes 
of markers themself are ignored but the pins’ leverage effect 
can amplify the indentation into shear, as shown in Fig. 4(b). 

Type 3: The case of pin-attached markers. Let the length of 
pins be l, and the tangential displacement of marker p under 
normal force FN be ∆r. According to [17], when the surface 
deform is small, the horizontal coordinate of the pin’s root is 
unchanged, and the tangential displacement of the marker p can 
be calculated as 
 

∆r = l sin θ  = l sin (tan-1 ( dz
dr� )), (17) 

 

where dz/dr expresses the surface gradient of the deformed skin, 
and θ  expresses the gradient angle. Under the small-angle 
approximation, Eqs. (17) can be written as 
 

∆r ≈ l ∙ dz
dr�  . (18) 

 

Eqs. (18) means that the marker’s tangential displacement 
(i.e., the shear strain of the skin) excited by normal extrusion is 
proportional to the surface gradient, and the amplification factor 
is the length of the pin. Therefore, the indentation information 
is amplified into shear information by the leverage of the pin. 
Although the normal and tangential strains are reflected in the 
same plane, they can still be identified since they produce 

different displacement patterns (normal: dipole or multipole 
field, tangent: uniform field) [17]. This method is closer to 2D 
MDM in information processing, but the source of its indirect 
feature is the attribute of pins (not coordinate values). Thus, we 
also include this method in the scope of 2.5D MDM. 

C. Technologies and Implementation 
The 2.5D MDM and 2D MDM have the same ideas for 

processing 2D displacement fields, including three parts: 
marker recognition, marker tracking, and mapping relationship 
construction. Since II-B has discussed the above process in 
detail, we only focus on the acquisition of normal displacement 
by indirect features. 
1) Obtain the indirect features of markers. 

Conventional marker preparation methods include printing 
or filling [76], embedding [77], and 3-D printing or casting [78]. 
Since the images of the markers, prepared by the above methods, 
can be directly reflected in the camera plane, a simple way is to 
obtain the indirect features according to (15) without other 
processing. The FingerVision sensor approximated the normal 
force by the size change of the markers (one of the methods) 
[77], [79]. The transformation from the original deformation to 
the 3D force was achieved by three conversion coefficients, 
which was similar to equation (16). The F-TOUCH sensor used 
the change of marker area across the camera image to indicate 
the z-direction displacements of markers [80]. The force 
evaluation based on this method has been revealed to be more 
accurate than that of GelSight. 

Besides, the deformation of the directly formed image is 
usually small. In order to obtain a significant image size change 
rate and reduce the proportion of error in measurement, the 
existing research has attempted in the optical system and 
marker preparation. Guo et al. adopted the depth from defocus 
(DFD) method to determine the distance between each marker 
and the camera [81]. They used convex lens imaging to 
determine the spot size of markers directly. The ChromaTouch 
sensor used two layers of semi-transparent markers to judge the 
compression deformation using the change of mixing color 
content [76], [82]. This approach could enhance the feature 
variation and support the post-processing based on light 
spectrum. The FingerVision with whiskers measured the 
normal force using the whisker markers that could easily 
deform [78] (similar to the design of TacTip [17]), thus 
improving the measurement sensitivity. 
2) Supplement depth information by other means. 

Since MDM was often used in combination with other types 
of visuotactile sensing approaches, features obtained by such 
methods could be used to supplement depth information. In the 
existing studies, a common method was to obtain the contact 
geometry by means of photometric stereo, so as to determine 
the z-coordinates of the markers. For example, Ito et al. allowed 
the LED light to pass through the red-colored water (for 
scatteration and absorption), and then calculates the depression 
depth of the touchpad surface according to the relationship 
between the image pixels’ color value, the illumination and 
distance [83]. The obtained 3D shape of touchpad was used to 
calculate the normal component of each marker’s displacement, 
which was then used to judge whether a mark was a sticking dot 
or a slipping dot [20]. GelSlim 2.0 [84] and GelSlim 3.0 [19] 
used the gel deformation in the z-direction to indicate the 
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normal displacements of markers. This enabled GelSlim to 
reconstruct the 3D distributed force-field using the inverse 
Finite Element Method (iFEM) based on the 3D displacement 
field. Although the above methods do not conform to the 
properties mentioned in Section III-A, we also regard them as 
2.5D MDM under extended semantics. 

Besides, an enlightening idea is to use the marker size and 
shape change to help predict the geometric information through 
learning-based approaches (e.g., the CNN method). In the 
tactile image, the variation in marker size can represent the 
indentation field, and the eccentricity of the marker can give 
information about the spatial gradient of the indentation field. 
Although different from the idea of converting indirect features 
into displacement, this method also belongs to the category of 
2.5D MDM. 

D. Related Applications 
Using 2.5D MDM, the marker points’ pseudo-3D coordinate 

and displacement can be obtained from the image information 
to achieve multimodal perception directly. The existing works 
include curvature measurements [82], contact process tracking 
[77], force distribution measurements [84], and multi-axis force 
measurements [80], among others. For 2D tactile information 
such as slip fields [79], [85], the reconstruction method of 2.5D 
MDM is not different from 2D MDM. As for 3D tactile 
information, such as force distribution [84], 2.5D MDM can use 
the pseudo-3D deformation information to achieve the 
reconstruction by the inverse Finite Element Method (iFEM). 
For example, suppose the stiffness matrix HX→F  of the soft 
elastomer can be obtained using calibration or learning 
technologies. In that case, the contact force distribution can be 
derived similarly to (6) by 
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The application scenario of 2.5D MDM is basically the same 
as that of 2D MDM. For the first two types of markers (rigid 
and deformable), Yamaguchi et al. applied the FingerVision 
sensor to the Baxter robot as the end effector, and the system 
can achieve stably cutting vegetables [77]. Using the obtained 
contact force, torque, and FingerVision’s unique proximity 
vision, different behaviors could be performed (e.g., adaptive 
capture,  handover, and in-hand manipulation [79], [86]). The 
above work was mainly completed by analyzing tactile 
behaviors for grasping and manipulation tasks, and designing 
appropriate control strategies [22]. Based on FingerVision, 
Belousov et al. developed a controller library that contained 
rich control strategies and tactile skills [87], and completed two 
challenging tasks: distinguishing objects with different 
characteristics and architectural assembly. 

For the third type of marker, only the TacTip sensor currently 
uses such a design. Section III-B has introduced that the pin-
attached markers can transfer the indentation in the normal 
direction to the horizontal direction. On this basis, Lepora et al. 
proposed a Voronoi-based method to reconstruct key tactile 
features [88]. They used the Voronoi tessellation principle to 
generate cells with each marker point as the centroid and form 

the area of the bound cells. The area change of each Voronoi 
element could reflect the normal deformation, while their 
centroid displacement of the centroid could reflect the 
tangential deformation. This method can reconstruct normal 
force, shear, and contact area without training a classifier or 
regressor, and has been applied in the perception and visualize 
mid-air haptic [89]. 

E. Discussion 
Compared with 2D MDM, the indirect features introduced in 

2.5D MDM can complement the normal measurement results, 
thus making the measured 3D deformation closer to the ground 
truth. For example, due to the ability to obtain the pseudo-3D 
coordinate field of the marker array, 2.5D MDM can obtain a 
relatively complete and rich contact morphology. Therefore, 
2.5D MDM has a high potential for object geometry 
identification, feature measurement, and contact area 
determination. Using the obtained 3D displacement field, 2.5D 
MDM can achieve dense normal force distribution 
reconstruction, which is harder to achieve with 2D MDM. 

In addition to reflecting the depth information of each 
sampling point, another advantage of indirect features based on 
imaging size changes is that it is relatively simple to implement. 
In general, the imaging-size variation of markers always exist 
in the process of contact for the area of speckle pixels to supply 
depth information, without adding any other devices or 
changing the hardware design. This facilitates the procedures of 
2.5D MDM sensors inspired by 2D MDM sensors. 

However, the use of indirect features implies a complex 
preparation process and detection algorithm, which makes the 
sensor more difficult to fabricate and may introduce more error 
terms. In addition, the z-directional displacement of markers 
does not strictly satisfy a stable relationship with the change 
rate of dimensions. 

1) For the rigid markers, (12) shows that the proportionality 
between ∆h and α is related to the horizontal position r, which 
indicates that the linear relationship can only be approximated 
when the horizontal displacement of the marker is small 
compared to the normal distance.  

2) For the deformable markers, (13) holds only under the 
assumptions of uniaxial compression and linear elasticity. In 
fact, the soft elastomers’ shape and boundary conditions are 
more complicated, and it is usually impossible to construct 
analytical expressions. 

3) For the pin-attached marker, although indentation features 
are converted into more sensitive shear features according to 
(18), the two features have merged and the skin shearing might 
distort the reconstructed indentation. Therefore, the decoupling 
and calculation difficulty of normal information estimation may 
increase. 

The above discussion implies that the accurate and reliable 
detection of 3D information in 2.5D MDM may also call for the 
assistance of appropriate machine learning methods. Therefore, 
2.5D MDM prefers to be a pseudo-3D measurement method 
under one implementation with low hardware cost, but cannot 
be classified into 3D MDM. 

IV. 3D MARKER DISPLACEMENT METHOD (3D MDM) 
According to the discussions in Section II and Section III, 
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depth information is important for the multimodal tactile 
perception of vision-based tactile sensors. Although artificial 
intelligence techniques have been widely used in the 
enhancement and applications of tactile sensors, there is no 
denying that the completeness of the information dimension 
will bring a higher data-driven effect. 

Both 2D MDM and 2.5D MDM use only a single camera. It 
makes sense in vision-based tactile sensor designs since the 
sensors need to be compact for integration into robotic systems. 
However, we note that in recent years, some research efforts 
using the multi-camera system have gradually emerged [23], 
[26], [90]-[97] (the details are introduced in Section IV-B). 
These sensors employed two or more cameras to form the 
parallax based on stereo vision principles, thus directly 
measuring the 3D coordinates and displacements of each 
marker, as shown in Fig. 5(a). 

From the perspective of dimensionality, we collectively refer 
to such approaches as the 3D marker displacement method (3D 
MDM). More generally, we can also include the visuotactile 
sensing techniques using depth cameras [99], [100], or time-of-
flight (ToF) cameras [101] into 3D MDM. In this section, we 
detail the principles of 3D MDM and the applications in vision-
based tactile sensors and discuss the possible development 
prospects. 

A. Principles of 3D MDM 
Stereo vision is not a novel concept. In nature, primates, 

including humans, possess a pair of eyes. They are at the front 
of the head and have a large area of overlapping visual fields 
[102]. We can refer to it as the common view area. In the 
common view area, parallax is formed when both eyes 
simultaneously see a feature position in the physical space. The 
presence of parallax allows humans to use binocular image 
signals to obtain depth information of feature points, thus 
creating a sense of stereo. In computer vision, the stereo vision 
has also been widely developed. By simulating the principles of 
human-eye vision, and combining camera models, triangulation, 
and depth map methods, we can use two cameras to obtain the 
distance between the object and the camera, thus enabling, for 
example, the application of 3D morphometry [103]. 

We present the measurement principle of 3D MDM using 
binocular vision as an example. In general, binocular vision-
based tasks employ stereo correction methods, which enable 
stereo matching based on epipolar geometry constraints [104]. 
However, for most vision-based tactile sensors based on MDM, 
the targets that need to be stereo recognized are the distinctive 
markers. We only need to identify these feature points without 
acquiring a full-image depth map. Therefore, we adopt a more 
flexible approach to obtain the 3D coordinates of each marker, 
as shown in Fig. 5(b). Select the marker P, locating in the 
common view area of the camera L and camera R, as the 
detection target. Assume that camera L and camera R satisfy 
synchronous triggering condition, ignore the distortion, and the 
internal reference matrices are IL and IR. The positions of the 
camera centers in the world coordinate system are OL�xol, 
yol, zol� and OR�xor, yor, zor�, respectively. At the k-th camera 
frame, the position of P in the world coordinate system is 
Pk �xp

k , yp
k , zp

k�, and the 2D coordinates of its image points in the 
two camera images are pl

k�ul
k, vl

k� and pr
k�ur

k, vr
k�, respectively. 

Therefore, the light vectors can be calculated as 
 

�
OLPk = slp

k  ∙ IL ∙ �ul
k   vl

k   fl�
T

ORPk = srp
k  ∙ IR ∙ �ur

k   vr
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T , (19) 

 

where slp
k  and srp

k  are unknown scaling factors, fl and fr are the 
camera focal lengths. The vectors can also be expressed as 
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 . (20) 

 

In (19) and (20), there are six equations but only five 
unknowns. It is a system of overdetermined equations, but such 
a result is acceptable. Since the two rays do not intersect at point 
P in the non-ideal case, we can use the extra part of information 
to correct the error [26]. A possible approach is to pick the 
common normal Pl

kPr
k of OLPk and ORPk, and use the midpoint 

of Pl
kPr

k as a measure of the marker Pk [97]. As shown in Fig. 
5(c), let the light vectors actually point to Pl

k  and Pr
k , 

respectively. Then 𝑷𝑷𝒌𝒌 can be calculated as 
 

Pk = (Pl
k + tl ∙ OLPl

k) + (Pr
k + tr ∙ ORPr

k)
2

 , (21) 
 

where tl and tr are parameters determined by the orthogonality 
relation, and satisfy [26] 
 

  �
OLPl

k ∙ �OL + tl ∙ OLPl
k − OR − tr ∙ ORPr

k� = 0
ORPr

k ∙ �OL + tl ∙ OLPl
k − OR − tr ∙ ORPr

k� = 0
. (22) 

 

The angle between vectors OLPl
k  and ORPr

k  is the viewing 
angle difference between the two cameras. According to the 
principle of binocular vision, the closer the viewing angle 
difference is to 90°, the smaller the effect of measurement error 
on the common normal Pl

kPr
k . Thus, the determined marker 

point position is more accurate. It is the reason for the preferred 
view angle difference of 90° in the optical path design [23]. 

The above discussion shows that with the use of binocular 
cameras, the intersection of a pair of optical rays can be used to 

 
Fig. 5. 3D marker displacement method. (a) The principle of multi-
camera measurement. (b) Binocular vision measurement in 3D MDM. 
(c) Correction of the marker position in the non-ideal case, using the 
midpoint of the two rays’ common normal. 



11  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

determine the certain marker P, thus enabling reliable 3D 
coordinate measurements. When the number of cameras 
exceeds two, we can obtain multiple sets of optical rays 
pointing to the marker. The multi-camera system can lead to 
richer data, thus providing the possibility of fitting more 
accurate results using methods such as energy optimization. 

B. Technologies and Implementation 
Different from 2D MDM and 2.5D MDM, 3D MDM-based 

sensors need to meet the hardware and software requirements 
of stereo vision. In this section, we mainly discuss the existing 
research in the establishment of stereo-vision system. 
1) Build the stereo-vision system. 
 A common way to build a stereo-vision system in the vision-
based tactile sensor is to replace the monocular camera with a 
stereo camera. Zhang et al. proposed a tactile sensor that can 
measure 3D displacement fields using binocular vision [90]. 
Kakani et al. captured the translation and rotation of the 
markers with a stereo camera [91]. The GelStereo sensor also 
used a stereo camera and the related stereo matching algorithm 
to calculate the contact depth information [25].  

Another approach is to use multiple monocular cameras and 
let them shoot at different positions and angles of view. 
Muscularis [93], TacLINK [94], and IoTouch [95] used two 
cameras, which were arranged at the top and bottom of the robot 
link, to capture the 3D displacement of the marker array on the 
inner wall. Such designs were also used in the ProTac sensor 
with proximity perception function [96]. The Tac3D sensor [23], 
[97] realized simultaneous measurement of two virtual cameras 
from different angles through a monocular camera, which was 
achieved by arranging mirrors to construct two optical paths.  

Compared with the former, the latter method can expand the 
perception area of the tactile sensor and reduce the impact of 
occlusion on the measurement. Still, the camera trigger may not 
be synchronized if different physical cameras are used. A 
feasible solution will be introduced later in Section IV-C. 
2) Establish the stereo-vision matching. 

In Section II-B and III-C, we have introduced the three 
processes of 2D MDM and 2.5D MDM: marker recognition, 
marker tracking, and mapping construction. In 3D MDM, due 
to the use of multiple cameras (usually two), it is also necessary 
to match the marker points identified in different camera images 
(i.e., image registration). 

A worthwhile approach is to narrow the search range when 
matching feature points by epipolar geometry constraints [90], 
[91]. As shown in Fig. 3(c), let pl  and pr  be the imaging 
positions of the marker point P in the two image planes, 
respectively. Define the intersection of the baseline OlOr and 
the two image planes as the epipoles: el and er. The lines plel 
and prer are called the epipolar lines corresponding to pl and pr, 
respectively. When the camera pose is determined, the position 
of epipoles in the image plane is constant. Therefore, if the 
position of pl is determined, pr must be in the intersection line 
prer  of the epipolar plane OlOrpl  and the image plane of the 
right camera. The following relationship is satisfied: 
 

pl
T ∙ Kl

 −T ∙ E ∙ Kr
 −1 ∙ pr=0. (23) 

 

In (23), E  is called the fundamental matrix, and Kl  and Kr 
denote the projection matrix of the two cameras, respectively. 

For visuotactile sensing, some 3D MDM-based sensors did 
not adopted the epipolar geometry constraints, but use a 
simplified matching idea: first, perform the path tracing on 
marker points, and then correlate the points obtained from the 
left and right camera measurements with each other according 
to the ordinal number [23], [94]. This requires that the 
algorithm can rely on the rule of markers’ arrangement to 
achieve marker point sorting in the tracking phase [25]. 

In addition, the marker-set pattern used in 3D MDM could 
be replaced with a dense speckle layer (similar to the dense 
scattered spots of 2D MDM in Section II-B). In [92], the marker 
pattern in GelStereo was updated to a semitransparent color 
pattern. Li et al. used the dense speckle layer to provide 
matching features [98]. Such designs could provide more 
texture information and adapt new approaches like self-
supervised disparity estimation. The stereo matching of these 
sensors was usually achieved by using the 3D digital image 
correlation (3D-DIC) algorithm. 

C. Virtual Stereo Vision System 
The approach presented in Section IV-A is the theoretical 

basis for 3D MDM. It enables the successful application of 
stereo vision-based 3D inspection methods in vision-based 
tactile sensors. Currently, the miniaturization trend of imaging 
equipment has significantly promoted the compactness of 
vision-based tactile sensors with a single-eye camera. However, 
in a visuotactile sensing system using stereo vision, the image-
matching task requires synchronous shooting of cameras. 
Adding a consumer binocular camera or an automatic trigger 
module will increase the overall size. Thus, compared with 2D 
MDM and 2.5D MDM, 3D MDM needs to solve the trade-off 
of synchronous triggering and compactness additionally. 

Virtual stereo vision is a promising solution that is easy to 
implement. This technique was first applied in the 1980s to 
study the motion mechanism of bubbles [106] and gradually 
evolved to 3D trajectory reconstruction focusing on 
measurement accuracy [107], [108]. Virtual stereo vision is 

 
Fig. 6. Virtual stereo vision system in 3D MDM. (a) Measuring principle 
of virtual stereo vision. (b) Optical structure of Tac3D 1.0 [23]. (c) 
Physical camera view that can be divided into two virtual image spaces. 
(d) Optical structure of Tac3D 2.0 [26]. 
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capable of implementing stereo vision with a single camera. It 
uses a single physical camera and a mirror reflection system to 
mirror two or even more virtual cameras and, therefore, can 
achieve stereo vision measurement, as shown in Fig. 6(a). 

The Tac3D sensor was the first to introduce virtual stereo 
vision to the field of visuotactile sensing. The optical structure 
of Tac3D 1.0 is shown in Fig. 6(b). By refracting the left and 
right light, the physical camera could be mirrored into two 
symmetric virtual cameras, and the image planes of virtual 
cameras 1 and 2 are shown in Fig. 6(c). Thus, each marker’s 
stereo image pairs could be obtained simultaneously in the same 
physical camera view (equivalent to having two cameras shoot 
at different angles simultaneously). This approach reduced the 
number of cameras under the condition that 3D measurements 
were achieved and did not require a synchronization controller 
to achieve simultaneous triggering, thus reducing sensor weight 
and cost. In addition, since the light path becomes more curved, 
longer light paths can be obtained in tight spaces. Tac3D 2.0 
[26], [97] further optimized the optical path structure and 
reduced the sensor size, and achieved the compactness close to 
that of the vision-based tactile sensor using a single camera with 
the same size, as shown in Fig. 6(d). 

In summary, the virtual stereo vision system is expected to 
contribute to the trade-off between structural compactness and 
synchronization trigger in 3D MDM. The compact design of the 
multi-view virtual camera system could also be realized by 
systematically optimizing the optical path structure. However, 
virtual stereo vision causes a portion of the camera field of view 
to be lost. Related works should consider the ambivalence of 
effective field of view area and the size of optical system. 

D. Related Applications 
3D MDM can provide relatively reliable 3D coordinate and 

displacement fields. The information obtained by 3D MDM is 
consistent with the ground truth, thus providing the possibility 
of high-quality multimodal perception. The existing works 
include friction coefficient measurement [23], 3D geometry 
reconstruction [26], contact position estimation [91], force 
distribution measurement [94], and slip field measurement 
[109], among others. The reconstruction method of 3D MDM 
for 3D tactile information is similar to that of 2.5D MDM, 
which is also achieved by constructing the mapping relationship 
between the 3D displacement field (or coordinate field) and 3D 
contact properties. 

Although there are few relevant researches on 3D MDM, 
existing researches have proved that this method has great 
application potential. The TacLINK [94] and IoTouch [95] 
based on iFEM and CNN could be used for robot parts with 
different shapes, and therefore it was possible to lay them in 
large scale. This technology could be extended to dexterous 
manipulation, human-computer interaction and other fields. 
The ProTac robotic link combined 3D MDM based on DNN 
model and proximity sensing technology, and the proposed 
design could be extended to other types of tactile sensing 
elements, and further extended to robot arm applications [96]. 
GelStereo uses point-cloud registration [25] and neural network 
[92], [105] to handle different application scenarios, including 
in-hand object localization and insertion, and adaptive capture. 
The above applications illustrate the potential of 3D MDM in 
application of robotic grasping and manipulation tasks. 

E. Discussion 
The major feature of 3D MDM is that it can obtain the 

original information of full dimensions. This means that 3D 
MDM can directly infer the indentation depth field, thus 
reducing the requirement in algorithm. Since the original 3D 
information obtained has higher confidence, 3D MDM can 
further improve the detail accuracy of contact geometry and 
force distribution field with the same mapping strategy or 
network architecture. In addition, the learning-based techniques 
commonly used in 2D MDM and 2.5D MDM can also be 
applied in 3D MDM. By constructing models that map from 3D 
displacement fields to other tactile properties, 3D MDM has the 
potential to reconstruct richer mechanical contact properties. 

In addition to achieving 3D information acquisition, adopting 
multiple cameras can also expand the perception range of the 
sensor (i.e., effective measurement format) [16]. For example, 
the OmniTact sensor had multiple micro-cameras built to shoot 
the gel-based skin from different directions and angles to detect 
multi-directional deformations and achieve global perception 
[110]. Trueeb et al. designed a vision-based robotic skin with 
four small embedded cameras arranged in an array to expand 
the sensing area without using additional reflective components 
[111]. This means that the multi-camera system can not only be 
applied to sensors based on 3D MDM, but also stimulate the 
innovative development of visuotactile sensing using 2D MDM 
and 2.5D MDM. 

Since tactile sensors usually need to be integrated into 
intelligent systems, robots, and the Internet of Things (IoT), 
high compactness are always needed. When the number of 
cameras increases, the sensor structure becomes bulky. In 
addition, the requirement of higher imaging range and distance 
in multi-vision have increased the difficulty of sensor 
integration. Thanks to the investment in smartphone technology 
and the development of camera miniaturization, the available 
camera modules has reached millimeter-level size, and vision-
based tactile sensors of fingertip-size are becoming available 
[55], [110]. For the research of using stereo vision in vision-
based tactile sensors, we recommend customizing the lens (with 
short focal length and wide angle of view) and the small PCB 
boards to mount them. In addition, virtual stereo vision and 
other technologies can offer inspiration to reduce the number of 
synchronous triggers and improve the compactness. 

Besides, the complex optical path structure could introduce 
other types of errors, such as the refraction error of the light 
between different materials. Several studies on optimizing 
optical system optimization in 3D MDM have emerged recently: 
Tac3D 2.0 considered the elastomer refraction effect 
compensation in the sensor calibration [97]. The GelStereo 
sensor built the refraction model of a multi-media optical path 
[92]. Ma et al. proposed the BVTS model for correcting 
refraction effects [112]. We hope that future research will 
further systematically investigate the design and optimization 
of optical models, and reduce the hardware performance 
requirements of the corresponding models. Such works will 
help improve the applicability of 3D MDM. 

V. CONCLUSION 
This article presents a detailed study and a categorization of 

the marker displacement method (MDM). MDM is a technique 
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TABLE I 

COMPARISON ON 2D MDM, 2.5D MDM, AND 3D MDM 

Types of MDM 2D MDM 2.5D MDM 3D MDM 

Schematic 

   

Dimensionality 2 (2D displacement field) 2 (2D displacement field)  
+ 0.5 (indirect features) 3 (3D displacement field) 

Fundamentals 
Single-camera measurement (mainly 
using the 2D data-driven method) 

Information supplement (mainly using 
the size change of markers) 

Multi-camera measurement (mainly 
using the binocular camera) 

Common technologies 

 Optical flow method [28], [37] 
 Finite element mode [63], [44] 
 Neural network [58], [53] 
mainly using the machine learning-
based approaches 

 Speckle detection [77], [80] 
 Feature enhancement [81], [82] 
mainly using the physical model-based 
approaches 

 Stereo vision [25], [94] 
 Virtual stereo vision [23], [26] 
mainly using the physical model-based 
approaches 

Operation steps 
1) Marker recognition 
2) Marker tracking 

1) Marker recognition 
2) Marker tracking 

1) Marker recognition 
2) Marker matching 
3) Marker tracking 

Error sources Quality of training data [53] Linear hypothesis [75] Refraction effect [112] 

Requirements 
1)  Design proper frameworks 
2)  Train mapping models 

1)  Implement indirect features 
2)  Introduce linear relationships 

1)  Design optical systems 
2)  Calibrate optical path 

2D tactile perception 
 Slip field [32] 
 Contact area [24] 
 2D force distribution [17] 

 Slip field [79] 
 Contact area [20] 
 2D force distribution [86] 

 Slip field [21] 
 Contact area [91] 
 Friction coefficient [23] 
 2D force distribution [97] 

3D tactile perception 
 Geometric features [46] 
 3D geometry [18] 
 3D force distribution [63] 

 Geometric features [82] 
 3D geometry [82] 
 3D force distribution [87] 

 Geometric features [112]  
 3D geometry [26] 
 3D force distribution [94] 

Advantages 

 Preparation is relatively easy 
 high flexibility and process speed 
 High adaptability with machine 

learning technologies 

 For 2D tactile perception, it has   
similar characteristics to 2D MDM 

 For 3D tactile perception, it has   
similar characteristics to 3D MDM 

 High quality of original information 
 Measured 3D distribution properties  

has relatively higher fineness 
 Virtual binocular vision system can  

be used to improve usability 

Disadvantages 

 Limited by design of algorithm and 
 model 
 Original information is inaccurate 
 Difficult to obtain accurate 3D 

distribution properties 

 Compared to 2D MDM, it has  
higher recognition difficulty   

 Compared to 3D MDM, it has  
less accurate depth information   

 Difficulties with compact design 
 Multi-media refraction errors 
 Relatively larger hardware expenses 
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commonly used in the field of visuotactile sensing. By using a 
camera to photograph the marks prepared on the sensor contact 
elastomer, a tactile image containing the position change of the 
markers can be obtained, and the tactile information can be 
further obtained by post-processing and analyzing the tactile 
image.  

For MDM-based visuotactile sensors, the deformation of the 
elastomer is usually considered original tactile information and 
is characterized in the form of 2D or 3D position information 
(coordinates and displacement) of the marker array. Due to the 
ability to obtain the exact position of the anchor points on the 
contact surface, using MDM can directly track the deformation 
process of the contact surface by interpolation and therefore has 
an advantage over other tactile information representing 
methods for measuring dynamic tactile information (e.g., 
dynamic process and distributed force measurements).  

In addition, the use of MDM for multimodal tactile 
perception has high potential since it uses controllable data and 
algorithms to construct mapping models based on the original 
tactile information. Researchers can use the latest machine 
learning techniques and physical models to extract various 
types of tactile information from the original displacement field 
(or coordinate field). 

The complexity of tactile perception stems in large part from 
the richness of the information discipline. Different dimensions 
of tactile information, including 2D and 3D information, should 
be acquired when dealing with various problems. To help 
researchers choose the appropriate research approaches, we 
first categorize MDM into 2D MDM, 2.5D MDM, and 3D 
MDM based on the dimensionality perspective [see Table I]. 

2D MDM is one of the more commonly used MDM. It relies 
only on the monocular camera to acquire the marker array’s 2D 
displacement field (and coordinate field) and uses well-
designed mechanical models or data-driven learning techniques 
to achieve information fusion, thus reconstructing the tactile 
information. This approach has relatively high flexibility and 
low hardware cost and is suitable for 2D tactile perception and 
3D concentrate characterization. Since the original tactile 
information has only two dimensions, it could be challenging to 
obtain 3D contact distribution using 2D MDM. However, this 
provide a broad exploration space for research work using more 
advanced end-to-end learning technologies. 

2.5D MDM supplements 2D MDM with selected indirect 
features reflecting the location of the markers in the third 
dimension (i.e., depth information). This method has similar 
properties to 2D MDM in measuring 2D tactile information 
while also enabling the acquisition of 3D contact distribution 
properties using a pseudo-3D displacement field. Due to the 
lack of information dimension, the 3D field quantity obtained 
directly by this method still has some errors compared with the 
ground truth. It is helpful to design learning networks that is 
sensitive to the indirect features to improve the quality of 3D 
information measurement. 

3D MDM employs a multi-camera system and can achieve 
tactile perception using the stereo vision method common in 
computer vision technology. The 3D displacement (or position) 
field obtained by 3D MDM has a high quality even without 
relying on learning technologies. Therefore, 3D MDM can be 
considered as having a relatively high upper-performance limit. 
However, the main obstacles constraining this approach are the 

oversized structure and the additional errors. Researchers are 
trying to optimize it with camera miniaturization, imaging 
system design, multi-media refraction model design, etc., to 
promote the application of 3D MDM. 

We believe the marker displacement method will be newly 
improved with the further development of vision-based tactile 
sensors. Future research work will use more advanced computer 
vision and image processing technology to improve the 
performance of MDM further. In addition, recent research has 
proved the potential of visuotactile sensing technology based 
on MDM in reflecting human touch behavior and interface 
phenomena. Li et al. proposed a novel 3D MDM to measure 
traction stress with the high spatial and temporal resolution, and 
studied the evolution of adhesion stress and the creep 
mechanism of snails [98]. Based on TacTip, Lepora et al. built 
SA-I and RA-I bionic tactile channels, and used 2D MDM to 
construct artificial tactile signals that closely resemble real 
tactile afferent activity recorded from monkeys on the same 
stimuli [113]. With the introduction of the RA-II channel, this 
multimodal perception system could reach the inspiration of 
artificial texture perception from the natural touch [114]. We 
expect the MDM-based visuotactile sensing technology to get 
more attention in interdisciplinary applications across robotics, 
physics, and biology. 
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